Mercurial > hg
view mercurial/narrowspec.py @ 39716:4dca2e028f0a
narrow: add test showing that local-to-local narrow clones don't work
It turns out they've never actually worked: prior to some recent
refactoring they just unintentionally followed the full-clone path,
which we unintentionally relied on in a test at Google.
Differential Revision: https://phab.mercurial-scm.org/D4640
author | Augie Fackler <augie@google.com> |
---|---|
date | Mon, 17 Sep 2018 20:43:40 -0400 |
parents | c8ea5c7ec99d |
children | ae20f52437e9 |
line wrap: on
line source
# narrowspec.py - methods for working with a narrow view of a repository # # Copyright 2017 Google, Inc. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import errno from .i18n import _ from . import ( error, match as matchmod, repository, sparse, util, ) FILENAME = 'narrowspec' # Pattern prefixes that are allowed in narrow patterns. This list MUST # only contain patterns that are fast and safe to evaluate. Keep in mind # that patterns are supplied by clients and executed on remote servers # as part of wire protocol commands. VALID_PREFIXES = ( b'path:', b'rootfilesin:', ) def normalizesplitpattern(kind, pat): """Returns the normalized version of a pattern and kind. Returns a tuple with the normalized kind and normalized pattern. """ pat = pat.rstrip('/') _validatepattern(pat) return kind, pat def _numlines(s): """Returns the number of lines in s, including ending empty lines.""" # We use splitlines because it is Unicode-friendly and thus Python 3 # compatible. However, it does not count empty lines at the end, so trick # it by adding a character at the end. return len((s + 'x').splitlines()) def _validatepattern(pat): """Validates the pattern and aborts if it is invalid. Patterns are stored in the narrowspec as newline-separated POSIX-style bytestring paths. There's no escaping. """ # We use newlines as separators in the narrowspec file, so don't allow them # in patterns. if _numlines(pat) > 1: raise error.Abort(_('newlines are not allowed in narrowspec paths')) components = pat.split('/') if '.' in components or '..' in components: raise error.Abort(_('"." and ".." are not allowed in narrowspec paths')) def normalizepattern(pattern, defaultkind='path'): """Returns the normalized version of a text-format pattern. If the pattern has no kind, the default will be added. """ kind, pat = matchmod._patsplit(pattern, defaultkind) return '%s:%s' % normalizesplitpattern(kind, pat) def parsepatterns(pats): """Parses an iterable of patterns into a typed pattern set. Patterns are assumed to be ``path:`` if no prefix is present. For safety and performance reasons, only some prefixes are allowed. See ``validatepatterns()``. This function should be used on patterns that come from the user to normalize and validate them to the internal data structure used for representing patterns. """ res = {normalizepattern(orig) for orig in pats} validatepatterns(res) return res def validatepatterns(pats): """Validate that patterns are in the expected data structure and format. And that is a set of normalized patterns beginning with ``path:`` or ``rootfilesin:``. This function should be used to validate internal data structures and patterns that are loaded from sources that use the internal, prefixed pattern representation (but can't necessarily be fully trusted). """ if not isinstance(pats, set): raise error.ProgrammingError('narrow patterns should be a set; ' 'got %r' % pats) for pat in pats: if not pat.startswith(VALID_PREFIXES): # Use a Mercurial exception because this can happen due to user # bugs (e.g. manually updating spec file). raise error.Abort(_('invalid prefix on narrow pattern: %s') % pat, hint=_('narrow patterns must begin with one of ' 'the following: %s') % ', '.join(VALID_PREFIXES)) def format(includes, excludes): output = '[include]\n' for i in sorted(includes - excludes): output += i + '\n' output += '[exclude]\n' for e in sorted(excludes): output += e + '\n' return output def match(root, include=None, exclude=None): if not include: # Passing empty include and empty exclude to matchmod.match() # gives a matcher that matches everything, so explicitly use # the nevermatcher. return matchmod.never(root, '') return matchmod.match(root, '', [], include=include or [], exclude=exclude or []) def load(repo): try: spec = repo.svfs.read(FILENAME) except IOError as e: # Treat "narrowspec does not exist" the same as "narrowspec file exists # and is empty". if e.errno == errno.ENOENT: return set(), set() raise # maybe we should care about the profiles returned too includepats, excludepats, profiles = sparse.parseconfig(repo.ui, spec, 'narrow') if profiles: raise error.Abort(_("including other spec files using '%include' is not" " supported in narrowspec")) validatepatterns(includepats) validatepatterns(excludepats) return includepats, excludepats def save(repo, includepats, excludepats): validatepatterns(includepats) validatepatterns(excludepats) spec = format(includepats, excludepats) repo.svfs.write(FILENAME, spec) def savebackup(repo, backupname): if repository.NARROW_REQUIREMENT not in repo.requirements: return vfs = repo.vfs vfs.tryunlink(backupname) util.copyfile(repo.svfs.join(FILENAME), vfs.join(backupname), hardlink=True) def restorebackup(repo, backupname): if repository.NARROW_REQUIREMENT not in repo.requirements: return util.rename(repo.vfs.join(backupname), repo.svfs.join(FILENAME)) def clearbackup(repo, backupname): if repository.NARROW_REQUIREMENT not in repo.requirements: return repo.vfs.unlink(backupname) def restrictpatterns(req_includes, req_excludes, repo_includes, repo_excludes): r""" Restricts the patterns according to repo settings, results in a logical AND operation :param req_includes: requested includes :param req_excludes: requested excludes :param repo_includes: repo includes :param repo_excludes: repo excludes :return: include patterns, exclude patterns, and invalid include patterns. >>> restrictpatterns({'f1','f2'}, {}, ['f1'], []) (set(['f1']), {}, []) >>> restrictpatterns({'f1'}, {}, ['f1','f2'], []) (set(['f1']), {}, []) >>> restrictpatterns({'f1/fc1', 'f3/fc3'}, {}, ['f1','f2'], []) (set(['f1/fc1']), {}, []) >>> restrictpatterns({'f1_fc1'}, {}, ['f1','f2'], []) ([], set(['path:.']), []) >>> restrictpatterns({'f1/../f2/fc2'}, {}, ['f1','f2'], []) (set(['f2/fc2']), {}, []) >>> restrictpatterns({'f1/../f3/fc3'}, {}, ['f1','f2'], []) ([], set(['path:.']), []) >>> restrictpatterns({'f1/$non_exitent_var'}, {}, ['f1','f2'], []) (set(['f1/$non_exitent_var']), {}, []) """ res_excludes = set(req_excludes) res_excludes.update(repo_excludes) invalid_includes = [] if not req_includes: res_includes = set(repo_includes) elif 'path:.' not in repo_includes: res_includes = [] for req_include in req_includes: req_include = util.expandpath(util.normpath(req_include)) if req_include in repo_includes: res_includes.append(req_include) continue valid = False for repo_include in repo_includes: if req_include.startswith(repo_include + '/'): valid = True res_includes.append(req_include) break if not valid: invalid_includes.append(req_include) if len(res_includes) == 0: res_excludes = {'path:.'} else: res_includes = set(res_includes) else: res_includes = set(req_includes) return res_includes, res_excludes, invalid_includes