view hgext/relink.py @ 35793:4fb2bb61597c

bundle2: increase payload part chunk size to 32kb Bundle2 payload parts are framed chunks. Esentially, we obtain data in equal size chunks of size `preferedchunksize` and emit those to a generator. That generator is fed into a compressor (which can be the no-op compressor, which just re-emits the generator). And the output from the compressor likely goes to a file descriptor or socket. What this means is that small chunk sizes create more Python objects and Python function calls than larger chunk sizes. And as we know, Python object and function call overhead in performance sensitive code matters (at least with CPython). This commit increases the bundle2 part payload chunk size from 4k to 32k. Practically speaking, this means that the chunks we feed into a compressor (implemented in C code) or feed directly into a file handle or socket write() are larger. It's possible the chunks might be larger than what the receiver can handle in one logical operation. But at that point, we're in C code, which is much more efficient at dealing with splitting up the chunk and making multiple function calls than Python is. A downside to larger chunks is that the receiver has to wait for that much data to arrive (either raw or from a decompressor) before it can process the chunk. But 32kb still feels like a small buffer to have to wait for. And in many cases, the client will convert from 8 read(4096) to 1 read(32768). That's happening in Python land. So we cut down on the number of Python objects and function calls, making the client faster as well. I don't think there are any significant concerns to increasing the payload chunk size to 32kb. The impact of this change on performance significant. Using `curl` to obtain a stream clone bundle2 payload from a server on localhost serving the mozilla-unified repository: before: 20.78 user; 7.71 system; 80.5 MB/s after: 13.90 user; 3.51 system; 132 MB/s legacy: 9.72 user; 8.16 system; 132 MB/s bundle2 stream clone generation is still more resource intensive than legacy stream clone (that's likely because of the use of a util.chunkbuffer). But the throughput is the same. We might be in territory we're this is effectively a benchmark of the networking stack or Python's syscall throughput. From the client perspective, `hg clone -U --stream`: before: 33.50 user; 7.95 system; 53.3 MB/s after: 22.82 user; 7.33 system; 72.7 MB/s legacy: 29.96 user; 7.94 system; 58.0 MB/s And for `hg clone --stream` with a working directory update of ~230k files: after: 119.55 user; 26.47 system; 0:57.08 wall legacy: 126.98 user; 26.94 system; 1:05.56 wall So, it appears that bundle2's stream clone is now definitively faster than legacy stream clone! Differential Revision: https://phab.mercurial-scm.org/D1932
author Gregory Szorc <gregory.szorc@gmail.com>
date Sat, 20 Jan 2018 22:55:42 -0800
parents 46ba2cdda476
children 4bc983568016
line wrap: on
line source

# Mercurial extension to provide 'hg relink' command
#
# Copyright (C) 2007 Brendan Cully <brendan@kublai.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

"""recreates hardlinks between repository clones"""
from __future__ import absolute_import

import os
import stat

from mercurial.i18n import _
from mercurial import (
    error,
    hg,
    registrar,
    util,
)

cmdtable = {}
command = registrar.command(cmdtable)
# Note for extension authors: ONLY specify testedwith = 'ships-with-hg-core' for
# extensions which SHIP WITH MERCURIAL. Non-mainline extensions should
# be specifying the version(s) of Mercurial they are tested with, or
# leave the attribute unspecified.
testedwith = 'ships-with-hg-core'

@command('relink', [], _('[ORIGIN]'))
def relink(ui, repo, origin=None, **opts):
    """recreate hardlinks between two repositories

    When repositories are cloned locally, their data files will be
    hardlinked so that they only use the space of a single repository.

    Unfortunately, subsequent pulls into either repository will break
    hardlinks for any files touched by the new changesets, even if
    both repositories end up pulling the same changes.

    Similarly, passing --rev to "hg clone" will fail to use any
    hardlinks, falling back to a complete copy of the source
    repository.

    This command lets you recreate those hardlinks and reclaim that
    wasted space.

    This repository will be relinked to share space with ORIGIN, which
    must be on the same local disk. If ORIGIN is omitted, looks for
    "default-relink", then "default", in [paths].

    Do not attempt any read operations on this repository while the
    command is running. (Both repositories will be locked against
    writes.)
    """
    if (not util.safehasattr(util, 'samefile') or
        not util.safehasattr(util, 'samedevice')):
        raise error.Abort(_('hardlinks are not supported on this system'))
    src = hg.repository(repo.baseui, ui.expandpath(origin or 'default-relink',
                                          origin or 'default'))
    ui.status(_('relinking %s to %s\n') % (src.store.path, repo.store.path))
    if repo.root == src.root:
        ui.status(_('there is nothing to relink\n'))
        return

    if not util.samedevice(src.store.path, repo.store.path):
        # No point in continuing
        raise error.Abort(_('source and destination are on different devices'))

    locallock = repo.lock()
    try:
        remotelock = src.lock()
        try:
            candidates = sorted(collect(src, ui))
            targets = prune(candidates, src.store.path, repo.store.path, ui)
            do_relink(src.store.path, repo.store.path, targets, ui)
        finally:
            remotelock.release()
    finally:
        locallock.release()

def collect(src, ui):
    seplen = len(os.path.sep)
    candidates = []
    live = len(src['tip'].manifest())
    # Your average repository has some files which were deleted before
    # the tip revision. We account for that by assuming that there are
    # 3 tracked files for every 2 live files as of the tip version of
    # the repository.
    #
    # mozilla-central as of 2010-06-10 had a ratio of just over 7:5.
    total = live * 3 // 2
    src = src.store.path
    pos = 0
    ui.status(_("tip has %d files, estimated total number of files: %d\n")
              % (live, total))
    for dirpath, dirnames, filenames in os.walk(src):
        dirnames.sort()
        relpath = dirpath[len(src) + seplen:]
        for filename in sorted(filenames):
            if filename[-2:] not in ('.d', '.i'):
                continue
            st = os.stat(os.path.join(dirpath, filename))
            if not stat.S_ISREG(st.st_mode):
                continue
            pos += 1
            candidates.append((os.path.join(relpath, filename), st))
            ui.progress(_('collecting'), pos, filename, _('files'), total)

    ui.progress(_('collecting'), None)
    ui.status(_('collected %d candidate storage files\n') % len(candidates))
    return candidates

def prune(candidates, src, dst, ui):
    def linkfilter(src, dst, st):
        try:
            ts = os.stat(dst)
        except OSError:
            # Destination doesn't have this file?
            return False
        if util.samefile(src, dst):
            return False
        if not util.samedevice(src, dst):
            # No point in continuing
            raise error.Abort(
                _('source and destination are on different devices'))
        if st.st_size != ts.st_size:
            return False
        return st

    targets = []
    total = len(candidates)
    pos = 0
    for fn, st in candidates:
        pos += 1
        srcpath = os.path.join(src, fn)
        tgt = os.path.join(dst, fn)
        ts = linkfilter(srcpath, tgt, st)
        if not ts:
            ui.debug('not linkable: %s\n' % fn)
            continue
        targets.append((fn, ts.st_size))
        ui.progress(_('pruning'), pos, fn, _('files'), total)

    ui.progress(_('pruning'), None)
    ui.status(_('pruned down to %d probably relinkable files\n') % len(targets))
    return targets

def do_relink(src, dst, files, ui):
    def relinkfile(src, dst):
        bak = dst + '.bak'
        os.rename(dst, bak)
        try:
            util.oslink(src, dst)
        except OSError:
            os.rename(bak, dst)
            raise
        os.remove(bak)

    CHUNKLEN = 65536
    relinked = 0
    savedbytes = 0

    pos = 0
    total = len(files)
    for f, sz in files:
        pos += 1
        source = os.path.join(src, f)
        tgt = os.path.join(dst, f)
        # Binary mode, so that read() works correctly, especially on Windows
        sfp = file(source, 'rb')
        dfp = file(tgt, 'rb')
        sin = sfp.read(CHUNKLEN)
        while sin:
            din = dfp.read(CHUNKLEN)
            if sin != din:
                break
            sin = sfp.read(CHUNKLEN)
        sfp.close()
        dfp.close()
        if sin:
            ui.debug('not linkable: %s\n' % f)
            continue
        try:
            relinkfile(source, tgt)
            ui.progress(_('relinking'), pos, f, _('files'), total)
            relinked += 1
            savedbytes += sz
        except OSError as inst:
            ui.warn('%s: %s\n' % (tgt, str(inst)))

    ui.progress(_('relinking'), None)

    ui.status(_('relinked %d files (%s reclaimed)\n') %
              (relinked, util.bytecount(savedbytes)))