rebase: clear updatestate during rebase --abort in more cases
Previously, rebase --abort would only call update if you were on a node that had
already been rebased. This meant that if the rebase failed during the rebase of
the first commit, the working copy would be left dirty (with a .hg/updatestate
file) and rebase --abort would not have update to clean it up.
The fix is to also perform an update if you're still on the target node or on
the original working copy node (since the working copy may be dirty, we still
need to do the update). We don't want to perform an update in all cases though
because of
issue4009.
A subsequent patch makes this case much more common, since it causes the entire
rebase transaction to rollback during unexpected exceptions. This causes the
existing test-rebase-abort.t to cover this case.
# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import, print_function
import contextlib
from .i18n import _
from . import (
encoding,
error,
util,
)
@contextlib.contextmanager
def lsprofile(ui, fp):
format = ui.config('profiling', 'format', default='text')
field = ui.config('profiling', 'sort', default='inlinetime')
limit = ui.configint('profiling', 'limit', default=30)
climit = ui.configint('profiling', 'nested', default=0)
if format not in ['text', 'kcachegrind']:
ui.warn(_("unrecognized profiling format '%s'"
" - Ignored\n") % format)
format = 'text'
try:
from . import lsprof
except ImportError:
raise error.Abort(_(
'lsprof not available - install from '
'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
p = lsprof.Profiler()
p.enable(subcalls=True)
try:
yield
finally:
p.disable()
if format == 'kcachegrind':
from . import lsprofcalltree
calltree = lsprofcalltree.KCacheGrind(p)
calltree.output(fp)
else:
# format == 'text'
stats = lsprof.Stats(p.getstats())
stats.sort(field)
stats.pprint(limit=limit, file=fp, climit=climit)
@contextlib.contextmanager
def flameprofile(ui, fp):
try:
from flamegraph import flamegraph
except ImportError:
raise error.Abort(_(
'flamegraph not available - install from '
'https://github.com/evanhempel/python-flamegraph'))
# developer config: profiling.freq
freq = ui.configint('profiling', 'freq', default=1000)
filter_ = None
collapse_recursion = True
thread = flamegraph.ProfileThread(fp, 1.0 / freq,
filter_, collapse_recursion)
start_time = util.timer()
try:
thread.start()
yield
finally:
thread.stop()
thread.join()
print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
util.timer() - start_time, thread.num_frames(),
thread.num_frames(unique=True)))
@contextlib.contextmanager
def statprofile(ui, fp):
from . import statprof
freq = ui.configint('profiling', 'freq', default=1000)
if freq > 0:
# Cannot reset when profiler is already active. So silently no-op.
if statprof.state.profile_level == 0:
statprof.reset(freq)
else:
ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)
statprof.start(mechanism='thread')
try:
yield
finally:
data = statprof.stop()
profformat = ui.config('profiling', 'statformat', 'hotpath')
formats = {
'byline': statprof.DisplayFormats.ByLine,
'bymethod': statprof.DisplayFormats.ByMethod,
'hotpath': statprof.DisplayFormats.Hotpath,
'json': statprof.DisplayFormats.Json,
'chrome': statprof.DisplayFormats.Chrome,
}
if profformat in formats:
displayformat = formats[profformat]
else:
ui.warn(_('unknown profiler output format: %s\n') % profformat)
displayformat = statprof.DisplayFormats.Hotpath
kwargs = {}
def fraction(s):
if s.endswith('%'):
v = float(s[:-1]) / 100
else:
v = float(s)
if 0 <= v <= 1:
return v
raise ValueError(s)
if profformat == 'chrome':
showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
showmax = ui.configwith(fraction, 'profiling', 'showmax', 0.999)
kwargs.update(minthreshold=showmin, maxthreshold=showmax)
statprof.display(fp, data=data, format=displayformat, **kwargs)
@contextlib.contextmanager
def profile(ui):
"""Start profiling.
Profiling is active when the context manager is active. When the context
manager exits, profiling results will be written to the configured output.
"""
profiler = encoding.environ.get('HGPROF')
if profiler is None:
profiler = ui.config('profiling', 'type', default='stat')
if profiler not in ('ls', 'stat', 'flame'):
ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler)
profiler = 'stat'
output = ui.config('profiling', 'output')
if output == 'blackbox':
fp = util.stringio()
elif output:
path = ui.expandpath(output)
fp = open(path, 'wb')
else:
fp = ui.ferr
try:
if profiler == 'ls':
proffn = lsprofile
elif profiler == 'flame':
proffn = flameprofile
else:
proffn = statprofile
with proffn(ui, fp):
yield
finally:
if output:
if output == 'blackbox':
val = 'Profile:\n%s' % fp.getvalue()
# ui.log treats the input as a format string,
# so we need to escape any % signs.
val = val.replace('%', '%%')
ui.log('profile', val)
fp.close()
@contextlib.contextmanager
def maybeprofile(ui):
"""Profile if enabled, else do nothing.
This context manager can be used to optionally profile if profiling
is enabled. Otherwise, it does nothing.
The purpose of this context manager is to make calling code simpler:
just use a single code path for calling into code you may want to profile
and this function determines whether to start profiling.
"""
if ui.configbool('profiling', 'enabled'):
with profile(ui):
yield
else:
yield