Mercurial > hg
view mercurial/treediscovery.py @ 18988:5bae936764bb
parsers: a C implementation of the new ancestors algorithm
The performance of both the old and new Python ancestor algorithms
depends on the number of revs they need to traverse. Although the
new algorithm performs far better than the old when revs are
numerically and topologically close, both algorithms become slow
under other circumstances, taking up to 1.8 seconds to give answers
in a Linux kernel repo.
This C implementation of the new algorithm is a fairly straightforward
transliteration. The only corner case of interest is that it raises
an OverflowError if the number of GCA candidates found during the
first pass is greater than 24, to avoid the dual perils of fixnum
overflow and trying to allocate too much memory. (If this exception
is raised, the Python implementation is used instead.)
Performance numbers are good: in a Linux kernel repo, time for "hg
debugancestors" on two distant revs (24bf01de7537 and c2a8808f5943)
is as follows:
Old Python: 0.36 sec
New Python: 0.42 sec
New C: 0.02 sec
For a case where the new algorithm should perform well:
Old Python: 1.84 sec
New Python: 0.07 sec
New C: measures as zero when using --time
(This commit includes a paranoid cross-check to ensure that the
Python and C implementations give identical answers. The above
performance numbers were measured with that check disabled.)
author | Bryan O'Sullivan <bryano@fb.com> |
---|---|
date | Tue, 16 Apr 2013 10:08:20 -0700 |
parents | cafd8a8fb713 |
children | d2704c48f417 |
line wrap: on
line source
# discovery.py - protocol changeset discovery functions # # Copyright 2010 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from node import nullid, short from i18n import _ import util, error def findcommonincoming(repo, remote, heads=None, force=False): """Return a tuple (common, fetch, heads) used to identify the common subset of nodes between repo and remote. "common" is a list of (at least) the heads of the common subset. "fetch" is a list of roots of the nodes that would be incoming, to be supplied to changegroupsubset. "heads" is either the supplied heads, or else the remote's heads. """ m = repo.changelog.nodemap search = [] fetch = set() seen = set() seenbranch = set() base = set() if not heads: heads = remote.heads() if repo.changelog.tip() == nullid: base.add(nullid) if heads != [nullid]: return [nullid], [nullid], list(heads) return [nullid], [], heads # assume we're closer to the tip than the root # and start by examining the heads repo.ui.status(_("searching for changes\n")) unknown = [] for h in heads: if h not in m: unknown.append(h) else: base.add(h) if not unknown: return list(base), [], list(heads) req = set(unknown) reqcnt = 0 # search through remote branches # a 'branch' here is a linear segment of history, with four parts: # head, root, first parent, second parent # (a branch always has two parents (or none) by definition) unknown = util.deque(remote.branches(unknown)) while unknown: r = [] while unknown: n = unknown.popleft() if n[0] in seen: continue repo.ui.debug("examining %s:%s\n" % (short(n[0]), short(n[1]))) if n[0] == nullid: # found the end of the branch pass elif n in seenbranch: repo.ui.debug("branch already found\n") continue elif n[1] and n[1] in m: # do we know the base? repo.ui.debug("found incomplete branch %s:%s\n" % (short(n[0]), short(n[1]))) search.append(n[0:2]) # schedule branch range for scanning seenbranch.add(n) else: if n[1] not in seen and n[1] not in fetch: if n[2] in m and n[3] in m: repo.ui.debug("found new changeset %s\n" % short(n[1])) fetch.add(n[1]) # earliest unknown for p in n[2:4]: if p in m: base.add(p) # latest known for p in n[2:4]: if p not in req and p not in m: r.append(p) req.add(p) seen.add(n[0]) if r: reqcnt += 1 repo.ui.progress(_('searching'), reqcnt, unit=_('queries')) repo.ui.debug("request %d: %s\n" % (reqcnt, " ".join(map(short, r)))) for p in xrange(0, len(r), 10): for b in remote.branches(r[p:p + 10]): repo.ui.debug("received %s:%s\n" % (short(b[0]), short(b[1]))) unknown.append(b) # do binary search on the branches we found while search: newsearch = [] reqcnt += 1 repo.ui.progress(_('searching'), reqcnt, unit=_('queries')) for n, l in zip(search, remote.between(search)): l.append(n[1]) p = n[0] f = 1 for i in l: repo.ui.debug("narrowing %d:%d %s\n" % (f, len(l), short(i))) if i in m: if f <= 2: repo.ui.debug("found new branch changeset %s\n" % short(p)) fetch.add(p) base.add(i) else: repo.ui.debug("narrowed branch search to %s:%s\n" % (short(p), short(i))) newsearch.append((p, i)) break p, f = i, f * 2 search = newsearch # sanity check our fetch list for f in fetch: if f in m: raise error.RepoError(_("already have changeset ") + short(f[:4])) base = list(base) if base == [nullid]: if force: repo.ui.warn(_("warning: repository is unrelated\n")) else: raise util.Abort(_("repository is unrelated")) repo.ui.debug("found new changesets starting at " + " ".join([short(f) for f in fetch]) + "\n") repo.ui.progress(_('searching'), None) repo.ui.debug("%d total queries\n" % reqcnt) return base, list(fetch), heads