Mercurial > hg
view tests/test-glog-topological.t @ 42455:5ca136bbd3f6
worker: support parallelization of functions with return values
Currently worker supports running functions that return a progress
iterator. Generalize it to handle function that return a progress
iterator then a return value.
It's unused in this commit, but will be used in the next one.
Differential Revision: https://phab.mercurial-scm.org/D6515
author | Valentin Gatien-Baron <vgatien-baron@janestreet.com> |
---|---|
date | Wed, 12 Jun 2019 13:10:52 -0400 |
parents | 604c086ddde6 |
children | ed84a4d48910 |
line wrap: on
line source
This test file aims at test topological iteration and the various configuration it can has. $ cat >> $HGRCPATH << EOF > [ui] > logtemplate={rev}\n > EOF On this simple example, all topological branch are displayed in turn until we can finally display 0. this implies skipping from 8 to 3 and coming back to 7 later. $ hg init test01 $ cd test01 $ hg unbundle $TESTDIR/bundles/remote.hg adding changesets adding manifests adding file changes added 9 changesets with 7 changes to 4 files (+1 heads) new changesets bfaf4b5cbf01:916f1afdef90 (9 drafts) (run 'hg heads' to see heads, 'hg merge' to merge) $ hg log -G o 8 | | o 7 | | | o 6 | | | o 5 | | | o 4 | | o | 3 | | o | 2 | | o | 1 |/ o 0 (display all nodes) $ hg log -G -r 'sort(all(), topo)' o 8 | o 3 | o 2 | o 1 | | o 7 | | | o 6 | | | o 5 | | | o 4 |/ o 0 (display nodes filtered by log options) $ hg log -G -r 'sort(all(), topo)' -k '.3' o 8 | o 3 | ~ o 7 | o 6 | ~ (revset skipping nodes) $ hg log -G --rev 'sort(not (2+6), topo)' o 8 | o 3 : o 1 | | o 7 | : | o 5 | | | o 4 |/ o 0 (begin) from the other branch $ hg log -G -r 'sort(all(), topo, topo.firstbranch=5)' o 7 | o 6 | o 5 | o 4 | | o 8 | | | o 3 | | | o 2 | | | o 1 |/ o 0 Topological sort can be turned on via config $ cat >> $HGRCPATH << EOF > [experimental] > log.topo=true > EOF $ hg log -G o 8 | o 3 | o 2 | o 1 | | o 7 | | | o 6 | | | o 5 | | | o 4 |/ o 0 Does not affect non-graph log $ hg log -T '{rev}\n' 8 7 6 5 4 3 2 1 0