profiling: make profiling functions context managers (API)
This makes profiling more flexible since we can now call multiple
functions when a profiler is active. But the real reason for this
is to enable a future consumer to profile a function that returns
a generator. We can't do this from the profiling function itself
because functions can either be generators or have return values:
they can't be both. So therefore it isn't possible to have a generic
profiling function that can both consume and re-emit a generator
and return a value.
# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import, print_function
import contextlib
import os
import sys
import time
from .i18n import _
from . import (
error,
util,
)
@contextlib.contextmanager
def lsprofile(ui, fp):
format = ui.config('profiling', 'format', default='text')
field = ui.config('profiling', 'sort', default='inlinetime')
limit = ui.configint('profiling', 'limit', default=30)
climit = ui.configint('profiling', 'nested', default=0)
if format not in ['text', 'kcachegrind']:
ui.warn(_("unrecognized profiling format '%s'"
" - Ignored\n") % format)
format = 'text'
try:
from . import lsprof
except ImportError:
raise error.Abort(_(
'lsprof not available - install from '
'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
p = lsprof.Profiler()
p.enable(subcalls=True)
try:
yield
finally:
p.disable()
if format == 'kcachegrind':
from . import lsprofcalltree
calltree = lsprofcalltree.KCacheGrind(p)
calltree.output(fp)
else:
# format == 'text'
stats = lsprof.Stats(p.getstats())
stats.sort(field)
stats.pprint(limit=limit, file=fp, climit=climit)
@contextlib.contextmanager
def flameprofile(ui, fp):
try:
from flamegraph import flamegraph
except ImportError:
raise error.Abort(_(
'flamegraph not available - install from '
'https://github.com/evanhempel/python-flamegraph'))
# developer config: profiling.freq
freq = ui.configint('profiling', 'freq', default=1000)
filter_ = None
collapse_recursion = True
thread = flamegraph.ProfileThread(fp, 1.0 / freq,
filter_, collapse_recursion)
start_time = time.clock()
try:
thread.start()
yield
finally:
thread.stop()
thread.join()
print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
time.clock() - start_time, thread.num_frames(),
thread.num_frames(unique=True)))
@contextlib.contextmanager
def statprofile(ui, fp):
try:
import statprof
except ImportError:
raise error.Abort(_(
'statprof not available - install using "easy_install statprof"'))
freq = ui.configint('profiling', 'freq', default=1000)
if freq > 0:
statprof.reset(freq)
else:
ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)
statprof.start()
try:
yield
finally:
statprof.stop()
statprof.display(fp)
@contextlib.contextmanager
def profile(ui):
"""Start profiling.
Profiling is active when the context manager is active. When the context
manager exits, profiling results will be written to the configured output.
"""
profiler = os.getenv('HGPROF')
if profiler is None:
profiler = ui.config('profiling', 'type', default='ls')
if profiler not in ('ls', 'stat', 'flame'):
ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler)
profiler = 'ls'
output = ui.config('profiling', 'output')
if output == 'blackbox':
fp = util.stringio()
elif output:
path = ui.expandpath(output)
fp = open(path, 'wb')
else:
fp = sys.stderr
try:
if profiler == 'ls':
proffn = lsprofile
elif profiler == 'flame':
proffn = flameprofile
else:
proffn = statprofile
with proffn(ui, fp):
yield
finally:
if output:
if output == 'blackbox':
val = 'Profile:\n%s' % fp.getvalue()
# ui.log treats the input as a format string,
# so we need to escape any % signs.
val = val.replace('%', '%%')
ui.log('profile', val)
fp.close()