view mercurial/pure/mpatch.py @ 46954:5d91eeac37ab

summary: use the new APIs Summary can perform some incoming/outgoing queries (that should be common to the other command with the same needs, but that is another story). We now use the new APIs to do so. The current code behavior is a bit fishy, relying to the fact "default" will be picked as the destination in last resort. I did not altered that, but left various comment to highlight the issue. Differential Revision: https://phab.mercurial-scm.org/D10420
author Pierre-Yves David <pierre-yves.david@octobus.net>
date Wed, 14 Apr 2021 19:30:48 +0200
parents d4ba4d51f85f
children 5aafc3c5bdec
line wrap: on
line source

# mpatch.py - Python implementation of mpatch.c
#
# Copyright 2009 Olivia Mackall <olivia@selenic.com> and others
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import struct

from .. import pycompat

stringio = pycompat.bytesio


class mpatchError(Exception):
    """error raised when a delta cannot be decoded"""


# This attempts to apply a series of patches in time proportional to
# the total size of the patches, rather than patches * len(text). This
# means rather than shuffling strings around, we shuffle around
# pointers to fragments with fragment lists.
#
# When the fragment lists get too long, we collapse them. To do this
# efficiently, we do all our operations inside a buffer created by
# mmap and simply use memmove. This avoids creating a bunch of large
# temporary string buffers.


def _pull(dst, src, l):  # pull l bytes from src
    while l:
        f = src.pop()
        if f[0] > l:  # do we need to split?
            src.append((f[0] - l, f[1] + l))
            dst.append((l, f[1]))
            return
        dst.append(f)
        l -= f[0]


def _move(m, dest, src, count):
    """move count bytes from src to dest

    The file pointer is left at the end of dest.
    """
    m.seek(src)
    buf = m.read(count)
    m.seek(dest)
    m.write(buf)


def _collect(m, buf, list):
    start = buf
    for l, p in reversed(list):
        _move(m, buf, p, l)
        buf += l
    return (buf - start, start)


def patches(a, bins):
    if not bins:
        return a

    plens = [len(x) for x in bins]
    pl = sum(plens)
    bl = len(a) + pl
    tl = bl + bl + pl  # enough for the patches and two working texts
    b1, b2 = 0, bl

    if not tl:
        return a

    m = stringio()

    # load our original text
    m.write(a)
    frags = [(len(a), b1)]

    # copy all the patches into our segment so we can memmove from them
    pos = b2 + bl
    m.seek(pos)
    for p in bins:
        m.write(p)

    for plen in plens:
        # if our list gets too long, execute it
        if len(frags) > 128:
            b2, b1 = b1, b2
            frags = [_collect(m, b1, frags)]

        new = []
        end = pos + plen
        last = 0
        while pos < end:
            m.seek(pos)
            try:
                p1, p2, l = struct.unpack(b">lll", m.read(12))
            except struct.error:
                raise mpatchError(b"patch cannot be decoded")
            _pull(new, frags, p1 - last)  # what didn't change
            _pull([], frags, p2 - p1)  # what got deleted
            new.append((l, pos + 12))  # what got added
            pos += l + 12
            last = p2
        frags.extend(reversed(new))  # what was left at the end

    t = _collect(m, b2, frags)

    m.seek(t[1])
    return m.read(t[0])


def patchedsize(orig, delta):
    outlen, last, bin = 0, 0, 0
    binend = len(delta)
    data = 12

    while data <= binend:
        decode = delta[bin : bin + 12]
        start, end, length = struct.unpack(b">lll", decode)
        if start > end:
            break
        bin = data + length
        data = bin + 12
        outlen += start - last
        last = end
        outlen += length

    if bin != binend:
        raise mpatchError(b"patch cannot be decoded")

    outlen += orig - last
    return outlen