revset: use integer representation of wdir() in revset
This is the simplest way to handle wdir() revision in revset. None didn't
work well because revset heavily depends on integer operations such as min(),
max(), sorted(), x:y, etc.
One downside is that we cannot do "wctx.rev() in set" because wctx.rev() is
still None. We could wrap the result set by wdirproxyset that translates None
to wdirrev, but it seems overengineered at this point.
result = getset(repo, subset, tree)
if 'wdir' in funcsused(tree):
result = wdirproxyset(result)
Test cases need the '(all() + wdir()) &' hack because we have yet to fix the
bootstrapping issue of null and wdir.
# parser.py - simple top-down operator precedence parser for mercurial
#
# Copyright 2010 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
# see http://effbot.org/zone/simple-top-down-parsing.htm and
# http://eli.thegreenplace.net/2010/01/02/top-down-operator-precedence-parsing/
# for background
# takes a tokenizer and elements
# tokenizer is an iterator that returns (type, value, pos) tuples
# elements is a mapping of types to binding strength, prefix, infix and
# optional suffix actions
# an action is a tree node name, a tree label, and an optional match
# __call__(program) parses program into a labeled tree
import error
from i18n import _
class parser(object):
def __init__(self, elements, methods=None):
self._elements = elements
self._methods = methods
self.current = None
def _advance(self):
'advance the tokenizer'
t = self.current
self.current = next(self._iter, None)
return t
def _match(self, m, pos):
'make sure the tokenizer matches an end condition'
if self.current[0] != m:
raise error.ParseError(_("unexpected token: %s") % self.current[0],
self.current[2])
self._advance()
def _parse(self, bind=0):
token, value, pos = self._advance()
# handle prefix rules on current token
prefix = self._elements[token][1]
if not prefix:
raise error.ParseError(_("not a prefix: %s") % token, pos)
if len(prefix) == 1:
expr = (prefix[0], value)
else:
if len(prefix) > 2 and prefix[2] == self.current[0]:
self._match(prefix[2], pos)
expr = (prefix[0], None)
else:
expr = (prefix[0], self._parse(prefix[1]))
if len(prefix) > 2:
self._match(prefix[2], pos)
# gather tokens until we meet a lower binding strength
while bind < self._elements[self.current[0]][0]:
token, value, pos = self._advance()
e = self._elements[token]
# check for suffix - next token isn't a valid prefix
if len(e) == 4 and not self._elements[self.current[0]][1]:
suffix = e[3]
expr = (suffix[0], expr)
else:
# handle infix rules
if len(e) < 3 or not e[2]:
raise error.ParseError(_("not an infix: %s") % token, pos)
infix = e[2]
if len(infix) == 3 and infix[2] == self.current[0]:
self._match(infix[2], pos)
expr = (infix[0], expr, (None))
else:
expr = (infix[0], expr, self._parse(infix[1]))
if len(infix) == 3:
self._match(infix[2], pos)
return expr
def parse(self, tokeniter):
'generate a parse tree from tokens'
self._iter = tokeniter
self._advance()
res = self._parse()
token, value, pos = self.current
return res, pos
def eval(self, tree):
'recursively evaluate a parse tree using node methods'
if not isinstance(tree, tuple):
return tree
return self._methods[tree[0]](*[self.eval(t) for t in tree[1:]])
def __call__(self, tokeniter):
'parse tokens into a parse tree and evaluate if methods given'
t = self.parse(tokeniter)
if self._methods:
return self.eval(t)
return t
def buildargsdict(trees, funcname, keys, keyvaluenode, keynode):
"""Build dict from list containing positional and keyword arguments
Invalid keywords or too many positional arguments are rejected, but
missing arguments are just omitted.
"""
if len(trees) > len(keys):
raise error.ParseError(_("%(func)s takes at most %(nargs)d arguments")
% {'func': funcname, 'nargs': len(keys)})
args = {}
# consume positional arguments
for k, x in zip(keys, trees):
if x[0] == keyvaluenode:
break
args[k] = x
# remainder should be keyword arguments
for x in trees[len(args):]:
if x[0] != keyvaluenode or x[1][0] != keynode:
raise error.ParseError(_("%(func)s got an invalid argument")
% {'func': funcname})
k = x[1][1]
if k not in keys:
raise error.ParseError(_("%(func)s got an unexpected keyword "
"argument '%(key)s'")
% {'func': funcname, 'key': k})
if k in args:
raise error.ParseError(_("%(func)s got multiple values for keyword "
"argument '%(key)s'")
% {'func': funcname, 'key': k})
args[k] = x[2]
return args
def _prettyformat(tree, leafnodes, level, lines):
if not isinstance(tree, tuple) or tree[0] in leafnodes:
lines.append((level, str(tree)))
else:
lines.append((level, '(%s' % tree[0]))
for s in tree[1:]:
_prettyformat(s, leafnodes, level + 1, lines)
lines[-1:] = [(lines[-1][0], lines[-1][1] + ')')]
def prettyformat(tree, leafnodes):
lines = []
_prettyformat(tree, leafnodes, 0, lines)
output = '\n'.join((' ' * l + s) for l, s in lines)
return output
def simplifyinfixops(tree, targetnodes):
"""Flatten chained infix operations to reduce usage of Python stack
>>> def f(tree):
... print prettyformat(simplifyinfixops(tree, ('or',)), ('symbol',))
>>> f(('or',
... ('or',
... ('symbol', '1'),
... ('symbol', '2')),
... ('symbol', '3')))
(or
('symbol', '1')
('symbol', '2')
('symbol', '3'))
>>> f(('func',
... ('symbol', 'p1'),
... ('or',
... ('or',
... ('func',
... ('symbol', 'sort'),
... ('list',
... ('or',
... ('or',
... ('symbol', '1'),
... ('symbol', '2')),
... ('symbol', '3')),
... ('negate',
... ('symbol', 'rev')))),
... ('and',
... ('symbol', '4'),
... ('group',
... ('or',
... ('or',
... ('symbol', '5'),
... ('symbol', '6')),
... ('symbol', '7'))))),
... ('symbol', '8'))))
(func
('symbol', 'p1')
(or
(func
('symbol', 'sort')
(list
(or
('symbol', '1')
('symbol', '2')
('symbol', '3'))
(negate
('symbol', 'rev'))))
(and
('symbol', '4')
(group
(or
('symbol', '5')
('symbol', '6')
('symbol', '7'))))
('symbol', '8')))
"""
if not isinstance(tree, tuple):
return tree
op = tree[0]
if op not in targetnodes:
return (op,) + tuple(simplifyinfixops(x, targetnodes) for x in tree[1:])
# walk down left nodes taking each right node. no recursion to left nodes
# because infix operators are left-associative, i.e. left tree is deep.
# e.g. '1 + 2 + 3' -> (+ (+ 1 2) 3) -> (+ 1 2 3)
simplified = []
x = tree
while x[0] == op:
l, r = x[1:]
simplified.append(simplifyinfixops(r, targetnodes))
x = l
simplified.append(simplifyinfixops(x, targetnodes))
simplified.append(op)
return tuple(reversed(simplified))