Mercurial > hg
view mercurial/wireprotov2peer.py @ 39224:5e52b6da9c0c
tests: demonstrate a problem with renames on the p2 side of a conversion
I think this is related to the octopus merge being sloppy, and that's having a
cascading affect on the fixup merge. If this change is made on p1 (specifically
with the 'Added parent file' commit), the failure doesn't occur.
The file modification with the rename doesn't seem to be necessary, but it's
what's happening in a production repo where I first noticed, so I left it. This
is an example of the manifest divergence I'd been seeing, which wasn't fixed by
Yuya's recent changes. This is separate from the changelog divergence I was
also seeing[1]. Probably nobody cares about bzr anymore, but this will also
affect git, since the octopus fixup code is in the hg sink.
[1] https://www.mercurial-scm.org/pipermail/mercurial-devel/2018-August/120473.html
author | Matt Harbison <matt_harbison@yahoo.com> |
---|---|
date | Mon, 20 Aug 2018 16:19:36 -0400 |
parents | 3ea8323d6f95 |
children | 1467b6c27ff9 |
line wrap: on
line source
# wireprotov2peer.py - client side code for wire protocol version 2 # # Copyright 2018 Gregory Szorc <gregory.szorc@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import from .i18n import _ from .thirdparty import ( cbor, ) from . import ( encoding, error, util, wireprotoframing, ) def formatrichmessage(atoms): """Format an encoded message from the framing protocol.""" chunks = [] for atom in atoms: msg = _(atom[b'msg']) if b'args' in atom: msg = msg % atom[b'args'] chunks.append(msg) return b''.join(chunks) class commandresponse(object): """Represents the response to a command request.""" def __init__(self, requestid, command): self.requestid = requestid self.command = command self.b = util.bytesio() def cborobjects(self): """Obtain decoded CBOR objects from this response.""" size = self.b.tell() self.b.seek(0) decoder = cbor.CBORDecoder(self.b) while self.b.tell() < size: yield decoder.decode() class clienthandler(object): """Object to handle higher-level client activities. The ``clientreactor`` is used to hold low-level state about the frame-based protocol, such as which requests and streams are active. This type is used for higher-level operations, such as reading frames from a socket, exposing and managing a higher-level primitive for representing command responses, etc. This class is what peers should probably use to bridge wire activity with the higher-level peer API. """ def __init__(self, ui, clientreactor): self._ui = ui self._reactor = clientreactor self._requests = {} self._futures = {} self._responses = {} def callcommand(self, command, args, f): """Register a request to call a command. Returns an iterable of frames that should be sent over the wire. """ request, action, meta = self._reactor.callcommand(command, args) if action != 'noop': raise error.ProgrammingError('%s not yet supported' % action) rid = request.requestid self._requests[rid] = request self._futures[rid] = f self._responses[rid] = commandresponse(rid, command) return iter(()) def flushcommands(self): """Flush all queued commands. Returns an iterable of frames that should be sent over the wire. """ action, meta = self._reactor.flushcommands() if action != 'sendframes': raise error.ProgrammingError('%s not yet supported' % action) return meta['framegen'] def readframe(self, fh): """Attempt to read and process a frame. Returns None if no frame was read. Presumably this means EOF. """ frame = wireprotoframing.readframe(fh) if frame is None: # TODO tell reactor? return self._ui.note(_('received %r\n') % frame) self._processframe(frame) return True def _processframe(self, frame): """Process a single read frame.""" action, meta = self._reactor.onframerecv(frame) if action == 'error': e = error.RepoError(meta['message']) if frame.requestid in self._futures: self._futures[frame.requestid].set_exception(e) else: raise e if frame.requestid not in self._requests: raise error.ProgrammingError( 'received frame for unknown request; this is either a bug in ' 'the clientreactor not screening for this or this instance was ' 'never told about this request: %r' % frame) response = self._responses[frame.requestid] if action == 'responsedata': response.b.write(meta['data']) if meta['eos']: # If the command has a decoder, resolve the future to the # decoded value. Otherwise resolve to the rich response object. decoder = COMMAND_DECODERS.get(response.command) # TODO consider always resolving the overall status map. if decoder: objs = response.cborobjects() overall = next(objs) if overall['status'] == 'ok': self._futures[frame.requestid].set_result(decoder(objs)) else: e = error.RepoError( formatrichmessage(overall['error']['message'])) self._futures[frame.requestid].set_exception(e) else: self._futures[frame.requestid].set_result(response) del self._requests[frame.requestid] del self._futures[frame.requestid] else: raise error.ProgrammingError( 'unhandled action from clientreactor: %s' % action) def decodebranchmap(objs): # Response should be a single CBOR map of branch name to array of nodes. bm = next(objs) return {encoding.tolocal(k): v for k, v in bm.items()} def decodeheads(objs): # Array of node bytestrings. return next(objs) def decodeknown(objs): # Bytestring where each byte is a 0 or 1. raw = next(objs) return [True if c == '1' else False for c in raw] def decodelistkeys(objs): # Map with bytestring keys and values. return next(objs) def decodelookup(objs): return next(objs) def decodepushkey(objs): return next(objs) COMMAND_DECODERS = { 'branchmap': decodebranchmap, 'heads': decodeheads, 'known': decodeknown, 'listkeys': decodelistkeys, 'lookup': decodelookup, 'pushkey': decodepushkey, }