Mercurial > hg
view mercurial/phases.py @ 26003:62371c539c89
revset: remove grandparent by using reachableroots
This patch is part of a series of patches to speed up the computation of
revset.reachableroots by introducing a C implementation. The main motivation
is to speed up smartlog on big repositories. At the end of the series, on our
big repositories the computation of reachableroots is 10-50x faster and
smartlog on is 2x-5x faster.
Before this patch, we had a custom computation for grandparent that was very
close to the idea of reacheablerooots. This patch expresses grandparent with
reachableroots to reduce the amount of code.
author | Laurent Charignon <lcharignon@fb.com> |
---|---|
date | Fri, 19 Jun 2015 20:28:52 -0700 |
parents | f14cea32e1d4 |
children | 56b2bcea2529 |
line wrap: on
line source
""" Mercurial phases support code --- Copyright 2011 Pierre-Yves David <pierre-yves.david@ens-lyon.org> Logilab SA <contact@logilab.fr> Augie Fackler <durin42@gmail.com> This software may be used and distributed according to the terms of the GNU General Public License version 2 or any later version. --- This module implements most phase logic in mercurial. Basic Concept ============= A 'changeset phase' is an indicator that tells us how a changeset is manipulated and communicated. The details of each phase is described below, here we describe the properties they have in common. Like bookmarks, phases are not stored in history and thus are not permanent and leave no audit trail. First, no changeset can be in two phases at once. Phases are ordered, so they can be considered from lowest to highest. The default, lowest phase is 'public' - this is the normal phase of existing changesets. A child changeset can not be in a lower phase than its parents. These phases share a hierarchy of traits: immutable shared public: X X draft: X secret: Local commits are draft by default. Phase Movement and Exchange =========================== Phase data is exchanged by pushkey on pull and push. Some servers have a publish option set, we call such a server a "publishing server". Pushing a draft changeset to a publishing server changes the phase to public. A small list of fact/rules define the exchange of phase: * old client never changes server states * pull never changes server states * publish and old server changesets are seen as public by client * any secret changeset seen in another repository is lowered to at least draft Here is the final table summing up the 49 possible use cases of phase exchange: server old publish non-publish N X N D P N D P old client pull N - X/X - X/D X/P - X/D X/P X - X/X - X/D X/P - X/D X/P push X X/X X/X X/P X/P X/P X/D X/D X/P new client pull N - P/X - P/D P/P - D/D P/P D - P/X - P/D P/P - D/D P/P P - P/X - P/D P/P - P/D P/P push D P/X P/X P/P P/P P/P D/D D/D P/P P P/X P/X P/P P/P P/P P/P P/P P/P Legend: A/B = final state on client / state on server * N = new/not present, * P = public, * D = draft, * X = not tracked (i.e., the old client or server has no internal way of recording the phase.) passive = only pushes A cell here can be read like this: "When a new client pushes a draft changeset (D) to a publishing server where it's not present (N), it's marked public on both sides (P/P)." Note: old client behave as a publishing server with draft only content - other people see it as public - content is pushed as draft """ from __future__ import absolute_import import errno import os from .i18n import _ from .node import ( bin, hex, nullid, nullrev, short, ) from . import ( error, util, ) allphases = public, draft, secret = range(3) trackedphases = allphases[1:] phasenames = ['public', 'draft', 'secret'] def _readroots(repo, phasedefaults=None): """Read phase roots from disk phasedefaults is a list of fn(repo, roots) callable, which are executed if the phase roots file does not exist. When phases are being initialized on an existing repository, this could be used to set selected changesets phase to something else than public. Return (roots, dirty) where dirty is true if roots differ from what is being stored. """ repo = repo.unfiltered() dirty = False roots = [set() for i in allphases] try: f = None if 'HG_PENDING' in os.environ: try: f = repo.svfs('phaseroots.pending') except IOError as inst: if inst.errno != errno.ENOENT: raise if f is None: f = repo.svfs('phaseroots') try: for line in f: phase, nh = line.split() roots[int(phase)].add(bin(nh)) finally: f.close() except IOError as inst: if inst.errno != errno.ENOENT: raise if phasedefaults: for f in phasedefaults: roots = f(repo, roots) dirty = True return roots, dirty class phasecache(object): def __init__(self, repo, phasedefaults, _load=True): if _load: # Cheap trick to allow shallow-copy without copy module self.phaseroots, self.dirty = _readroots(repo, phasedefaults) self._phaserevs = None self._phasesets = None self.filterunknown(repo) self.opener = repo.svfs def copy(self): # Shallow copy meant to ensure isolation in # advance/retractboundary(), nothing more. ph = self.__class__(None, None, _load=False) ph.phaseroots = self.phaseroots[:] ph.dirty = self.dirty ph.opener = self.opener ph._phaserevs = self._phaserevs ph._phasesets = self._phasesets return ph def replace(self, phcache): """replace all values in 'self' with content of phcache""" for a in ('phaseroots', 'dirty', 'opener', '_phaserevs', '_phasesets'): setattr(self, a, getattr(phcache, a)) def _getphaserevsnative(self, repo): repo = repo.unfiltered() nativeroots = [] for phase in trackedphases: nativeroots.append(map(repo.changelog.rev, self.phaseroots[phase])) return repo.changelog.computephases(nativeroots) def _computephaserevspure(self, repo): repo = repo.unfiltered() revs = [public] * len(repo.changelog) self._phaserevs = revs self._populatephaseroots(repo) for phase in trackedphases: roots = map(repo.changelog.rev, self.phaseroots[phase]) if roots: for rev in roots: revs[rev] = phase for rev in repo.changelog.descendants(roots): revs[rev] = phase def loadphaserevs(self, repo): """ensure phase information is loaded in the object""" if self._phaserevs is None: try: if repo.ui.configbool('experimental', 'nativephaseskillswitch'): self._computephaserevspure(repo) else: res = self._getphaserevsnative(repo) self._phaserevs, self._phasesets = res except AttributeError: self._computephaserevspure(repo) def invalidate(self): self._phaserevs = None self._phasesets = None def _populatephaseroots(self, repo): """Fills the _phaserevs cache with phases for the roots. """ cl = repo.changelog phaserevs = self._phaserevs for phase in trackedphases: roots = map(cl.rev, self.phaseroots[phase]) for root in roots: phaserevs[root] = phase def phase(self, repo, rev): # We need a repo argument here to be able to build _phaserevs # if necessary. The repository instance is not stored in # phasecache to avoid reference cycles. The changelog instance # is not stored because it is a filecache() property and can # be replaced without us being notified. if rev == nullrev: return public if rev < nullrev: raise ValueError(_('cannot lookup negative revision')) if self._phaserevs is None or rev >= len(self._phaserevs): self.invalidate() self.loadphaserevs(repo) return self._phaserevs[rev] def write(self): if not self.dirty: return f = self.opener('phaseroots', 'w', atomictemp=True) try: self._write(f) finally: f.close() def _write(self, fp): for phase, roots in enumerate(self.phaseroots): for h in roots: fp.write('%i %s\n' % (phase, hex(h))) self.dirty = False def _updateroots(self, phase, newroots, tr): self.phaseroots[phase] = newroots self.invalidate() self.dirty = True tr.addfilegenerator('phase', ('phaseroots',), self._write) tr.hookargs['phases_moved'] = '1' def advanceboundary(self, repo, tr, targetphase, nodes): # Be careful to preserve shallow-copied values: do not update # phaseroots values, replace them. repo = repo.unfiltered() delroots = [] # set of root deleted by this path for phase in xrange(targetphase + 1, len(allphases)): # filter nodes that are not in a compatible phase already nodes = [n for n in nodes if self.phase(repo, repo[n].rev()) >= phase] if not nodes: break # no roots to move anymore olds = self.phaseroots[phase] roots = set(ctx.node() for ctx in repo.set( 'roots((%ln::) - (%ln::%ln))', olds, olds, nodes)) if olds != roots: self._updateroots(phase, roots, tr) # some roots may need to be declared for lower phases delroots.extend(olds - roots) # declare deleted root in the target phase if targetphase != 0: self.retractboundary(repo, tr, targetphase, delroots) repo.invalidatevolatilesets() def retractboundary(self, repo, tr, targetphase, nodes): # Be careful to preserve shallow-copied values: do not update # phaseroots values, replace them. repo = repo.unfiltered() currentroots = self.phaseroots[targetphase] newroots = [n for n in nodes if self.phase(repo, repo[n].rev()) < targetphase] if newroots: if nullid in newroots: raise util.Abort(_('cannot change null revision phase')) currentroots = currentroots.copy() currentroots.update(newroots) ctxs = repo.set('roots(%ln::)', currentroots) currentroots.intersection_update(ctx.node() for ctx in ctxs) self._updateroots(targetphase, currentroots, tr) repo.invalidatevolatilesets() def filterunknown(self, repo): """remove unknown nodes from the phase boundary Nothing is lost as unknown nodes only hold data for their descendants. """ filtered = False nodemap = repo.changelog.nodemap # to filter unknown nodes for phase, nodes in enumerate(self.phaseroots): missing = sorted(node for node in nodes if node not in nodemap) if missing: for mnode in missing: repo.ui.debug( 'removing unknown node %s from %i-phase boundary\n' % (short(mnode), phase)) nodes.symmetric_difference_update(missing) filtered = True if filtered: self.dirty = True # filterunknown is called by repo.destroyed, we may have no changes in # root but phaserevs contents is certainly invalid (or at least we # have not proper way to check that). related to issue 3858. # # The other caller is __init__ that have no _phaserevs initialized # anyway. If this change we should consider adding a dedicated # "destroyed" function to phasecache or a proper cache key mechanism # (see branchmap one) self.invalidate() def advanceboundary(repo, tr, targetphase, nodes): """Add nodes to a phase changing other nodes phases if necessary. This function move boundary *forward* this means that all nodes are set in the target phase or kept in a *lower* phase. Simplify boundary to contains phase roots only.""" phcache = repo._phasecache.copy() phcache.advanceboundary(repo, tr, targetphase, nodes) repo._phasecache.replace(phcache) def retractboundary(repo, tr, targetphase, nodes): """Set nodes back to a phase changing other nodes phases if necessary. This function move boundary *backward* this means that all nodes are set in the target phase or kept in a *higher* phase. Simplify boundary to contains phase roots only.""" phcache = repo._phasecache.copy() phcache.retractboundary(repo, tr, targetphase, nodes) repo._phasecache.replace(phcache) def listphases(repo): """List phases root for serialization over pushkey""" keys = {} value = '%i' % draft for root in repo._phasecache.phaseroots[draft]: keys[hex(root)] = value if repo.publishing(): # Add an extra data to let remote know we are a publishing # repo. Publishing repo can't just pretend they are old repo. # When pushing to a publishing repo, the client still need to # push phase boundary # # Push do not only push changeset. It also push phase data. # New phase data may apply to common changeset which won't be # push (as they are common). Here is a very simple example: # # 1) repo A push changeset X as draft to repo B # 2) repo B make changeset X public # 3) repo B push to repo A. X is not pushed but the data that # X as now public should # # The server can't handle it on it's own as it has no idea of # client phase data. keys['publishing'] = 'True' return keys def pushphase(repo, nhex, oldphasestr, newphasestr): """List phases root for serialization over pushkey""" repo = repo.unfiltered() tr = None lock = repo.lock() try: currentphase = repo[nhex].phase() newphase = abs(int(newphasestr)) # let's avoid negative index surprise oldphase = abs(int(oldphasestr)) # let's avoid negative index surprise if currentphase == oldphase and newphase < oldphase: tr = repo.transaction('pushkey-phase') advanceboundary(repo, tr, newphase, [bin(nhex)]) tr.close() return 1 elif currentphase == newphase: # raced, but got correct result return 1 else: return 0 finally: if tr: tr.release() lock.release() def analyzeremotephases(repo, subset, roots): """Compute phases heads and root in a subset of node from root dict * subset is heads of the subset * roots is {<nodeid> => phase} mapping. key and value are string. Accept unknown element input """ repo = repo.unfiltered() # build list from dictionary draftroots = [] nodemap = repo.changelog.nodemap # to filter unknown nodes for nhex, phase in roots.iteritems(): if nhex == 'publishing': # ignore data related to publish option continue node = bin(nhex) phase = int(phase) if phase == 0: if node != nullid: repo.ui.warn(_('ignoring inconsistent public root' ' from remote: %s\n') % nhex) elif phase == 1: if node in nodemap: draftroots.append(node) else: repo.ui.warn(_('ignoring unexpected root from remote: %i %s\n') % (phase, nhex)) # compute heads publicheads = newheads(repo, subset, draftroots) return publicheads, draftroots def newheads(repo, heads, roots): """compute new head of a subset minus another * `heads`: define the first subset * `roots`: define the second we subtract from the first""" repo = repo.unfiltered() revset = repo.set('heads((%ln + parents(%ln)) - (%ln::%ln))', heads, roots, roots, heads) return [c.node() for c in revset] def newcommitphase(ui): """helper to get the target phase of new commit Handle all possible values for the phases.new-commit options. """ v = ui.config('phases', 'new-commit', draft) try: return phasenames.index(v) except ValueError: try: return int(v) except ValueError: msg = _("phases.new-commit: not a valid phase name ('%s')") raise error.ConfigError(msg % v) def hassecret(repo): """utility function that check if a repo have any secret changeset.""" return bool(repo._phasecache.phaseroots[2])