Mercurial > hg
view mercurial/cext/revlog.c @ 40445:634b45317459 stable
changegroup: restore default node ordering (issue6001)
Changeset db5501d9 changed the default node ordering from "storage" to
"linearize".
While the new API is more explicit and cleaner, the "linearize" order is
problematic on certain repositories like netbeans where it makes bundling
slower the more nodes we bundle.
Pushing and pulling 100 changesets was ~20% slower and pushing and pulling
1000 changesets was ~600% slower.
A very quick analysis of profile traces showed that the pull operation was
taking more time creating the delta.
Putting back the old default order seems to be the safe option. With more time
during the next cycle, we can understand better the impact of sorting with the
DAG order by default, the source of the regression and how to mitigate it.
/!\ We are still waiting for the full performance impact but with this patch,
bundling and pulling locally (not on the performance workstation) 1000
changesets on the netbeans repository is as fast as before the regression.
Differential Revision: https://phab.mercurial-scm.org/D5196
author | Boris Feld <boris.feld@octobus.net> |
---|---|
date | Wed, 31 Oct 2018 12:08:37 -0700 |
parents | 72b94f946e90 |
children | a91a2837150b 88702fd208ce |
line wrap: on
line source
/* parsers.c - efficient content parsing Copyright 2008 Matt Mackall <mpm@selenic.com> and others This software may be used and distributed according to the terms of the GNU General Public License, incorporated herein by reference. */ #include <Python.h> #include <assert.h> #include <ctype.h> #include <stddef.h> #include <string.h> #include "bitmanipulation.h" #include "charencode.h" #include "util.h" #ifdef IS_PY3K /* The mapping of Python types is meant to be temporary to get Python * 3 to compile. We should remove this once Python 3 support is fully * supported and proper types are used in the extensions themselves. */ #define PyInt_Check PyLong_Check #define PyInt_FromLong PyLong_FromLong #define PyInt_FromSsize_t PyLong_FromSsize_t #define PyInt_AS_LONG PyLong_AS_LONG #define PyInt_AsLong PyLong_AsLong #endif typedef struct indexObjectStruct indexObject; typedef struct { int children[16]; } nodetreenode; /* * A base-16 trie for fast node->rev mapping. * * Positive value is index of the next node in the trie * Negative value is a leaf: -(rev + 2) * Zero is empty */ typedef struct { indexObject *index; nodetreenode *nodes; unsigned length; /* # nodes in use */ unsigned capacity; /* # nodes allocated */ int depth; /* maximum depth of tree */ int splits; /* # splits performed */ } nodetree; typedef struct { PyObject_HEAD nodetree nt; } nodetreeObject; /* * This class has two behaviors. * * When used in a list-like way (with integer keys), we decode an * entry in a RevlogNG index file on demand. Our last entry is a * sentinel, always a nullid. We have limited support for * integer-keyed insert and delete, only at elements right before the * sentinel. * * With string keys, we lazily perform a reverse mapping from node to * rev, using a base-16 trie. */ struct indexObjectStruct { PyObject_HEAD /* Type-specific fields go here. */ PyObject *data; /* raw bytes of index */ Py_buffer buf; /* buffer of data */ PyObject **cache; /* cached tuples */ const char **offsets; /* populated on demand */ Py_ssize_t raw_length; /* original number of elements */ Py_ssize_t length; /* current number of elements */ PyObject *added; /* populated on demand */ PyObject *headrevs; /* cache, invalidated on changes */ PyObject *filteredrevs;/* filtered revs set */ nodetree nt; /* base-16 trie */ int ntinitialized; /* 0 or 1 */ int ntrev; /* last rev scanned */ int ntlookups; /* # lookups */ int ntmisses; /* # lookups that miss the cache */ int inlined; }; static Py_ssize_t index_length(const indexObject *self) { if (self->added == NULL) return self->length; return self->length + PyList_GET_SIZE(self->added); } static PyObject *nullentry = NULL; static const char nullid[20] = {0}; static Py_ssize_t inline_scan(indexObject *self, const char **offsets); #if LONG_MAX == 0x7fffffffL static const char *const tuple_format = PY23("Kiiiiiis#", "Kiiiiiiy#"); #else static const char *const tuple_format = PY23("kiiiiiis#", "kiiiiiiy#"); #endif /* A RevlogNG v1 index entry is 64 bytes long. */ static const long v1_hdrsize = 64; static void raise_revlog_error(void) { PyObject *mod = NULL, *dict = NULL, *errclass = NULL; mod = PyImport_ImportModule("mercurial.error"); if (mod == NULL) { goto cleanup; } dict = PyModule_GetDict(mod); if (dict == NULL) { goto cleanup; } Py_INCREF(dict); errclass = PyDict_GetItemString(dict, "RevlogError"); if (errclass == NULL) { PyErr_SetString(PyExc_SystemError, "could not find RevlogError"); goto cleanup; } /* value of exception is ignored by callers */ PyErr_SetString(errclass, "RevlogError"); cleanup: Py_XDECREF(dict); Py_XDECREF(mod); } /* * Return a pointer to the beginning of a RevlogNG record. */ static const char *index_deref(indexObject *self, Py_ssize_t pos) { if (self->inlined && pos > 0) { if (self->offsets == NULL) { self->offsets = PyMem_Malloc(self->raw_length * sizeof(*self->offsets)); if (self->offsets == NULL) return (const char *)PyErr_NoMemory(); inline_scan(self, self->offsets); } return self->offsets[pos]; } return (const char *)(self->buf.buf) + pos * v1_hdrsize; } static inline int index_get_parents(indexObject *self, Py_ssize_t rev, int *ps, int maxrev) { if (rev >= self->length) { PyObject *tuple = PyList_GET_ITEM(self->added, rev - self->length); ps[0] = (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 5)); ps[1] = (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 6)); } else { const char *data = index_deref(self, rev); ps[0] = getbe32(data + 24); ps[1] = getbe32(data + 28); } /* If index file is corrupted, ps[] may point to invalid revisions. So * there is a risk of buffer overflow to trust them unconditionally. */ if (ps[0] > maxrev || ps[1] > maxrev) { PyErr_SetString(PyExc_ValueError, "parent out of range"); return -1; } return 0; } /* * RevlogNG format (all in big endian, data may be inlined): * 6 bytes: offset * 2 bytes: flags * 4 bytes: compressed length * 4 bytes: uncompressed length * 4 bytes: base revision * 4 bytes: link revision * 4 bytes: parent 1 revision * 4 bytes: parent 2 revision * 32 bytes: nodeid (only 20 bytes used) */ static PyObject *index_get(indexObject *self, Py_ssize_t pos) { uint64_t offset_flags; int comp_len, uncomp_len, base_rev, link_rev, parent_1, parent_2; const char *c_node_id; const char *data; Py_ssize_t length = index_length(self); PyObject *entry; if (pos == -1) { Py_INCREF(nullentry); return nullentry; } if (pos < 0 || pos >= length) { PyErr_SetString(PyExc_IndexError, "revlog index out of range"); return NULL; } if (pos >= self->length) { PyObject *obj; obj = PyList_GET_ITEM(self->added, pos - self->length); Py_INCREF(obj); return obj; } if (self->cache) { if (self->cache[pos]) { Py_INCREF(self->cache[pos]); return self->cache[pos]; } } else { self->cache = calloc(self->raw_length, sizeof(PyObject *)); if (self->cache == NULL) return PyErr_NoMemory(); } data = index_deref(self, pos); if (data == NULL) return NULL; offset_flags = getbe32(data + 4); if (pos == 0) /* mask out version number for the first entry */ offset_flags &= 0xFFFF; else { uint32_t offset_high = getbe32(data); offset_flags |= ((uint64_t)offset_high) << 32; } comp_len = getbe32(data + 8); uncomp_len = getbe32(data + 12); base_rev = getbe32(data + 16); link_rev = getbe32(data + 20); parent_1 = getbe32(data + 24); parent_2 = getbe32(data + 28); c_node_id = data + 32; entry = Py_BuildValue(tuple_format, offset_flags, comp_len, uncomp_len, base_rev, link_rev, parent_1, parent_2, c_node_id, 20); if (entry) { PyObject_GC_UnTrack(entry); Py_INCREF(entry); } self->cache[pos] = entry; return entry; } /* * Return the 20-byte SHA of the node corresponding to the given rev. */ static const char *index_node(indexObject *self, Py_ssize_t pos) { Py_ssize_t length = index_length(self); const char *data; if (pos == -1) return nullid; if (pos >= length) return NULL; if (pos >= self->length) { PyObject *tuple, *str; tuple = PyList_GET_ITEM(self->added, pos - self->length); str = PyTuple_GetItem(tuple, 7); return str ? PyBytes_AS_STRING(str) : NULL; } data = index_deref(self, pos); return data ? data + 32 : NULL; } /* * Return the 20-byte SHA of the node corresponding to the given rev. The * rev is assumed to be existing. If not, an exception is set. */ static const char *index_node_existing(indexObject *self, Py_ssize_t pos) { const char *node = index_node(self, pos); if (node == NULL) { PyErr_Format(PyExc_IndexError, "could not access rev %d", (int)pos); } return node; } static int nt_insert(nodetree *self, const char *node, int rev); static int node_check(PyObject *obj, char **node) { Py_ssize_t nodelen; if (PyBytes_AsStringAndSize(obj, node, &nodelen) == -1) return -1; if (nodelen == 20) return 0; PyErr_SetString(PyExc_ValueError, "20-byte hash required"); return -1; } static PyObject *index_append(indexObject *self, PyObject *obj) { char *node; Py_ssize_t len; if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 8) { PyErr_SetString(PyExc_TypeError, "8-tuple required"); return NULL; } if (node_check(PyTuple_GET_ITEM(obj, 7), &node) == -1) return NULL; len = index_length(self); if (self->added == NULL) { self->added = PyList_New(0); if (self->added == NULL) return NULL; } if (PyList_Append(self->added, obj) == -1) return NULL; if (self->ntinitialized) nt_insert(&self->nt, node, (int)len); Py_CLEAR(self->headrevs); Py_RETURN_NONE; } static PyObject *index_stats(indexObject *self) { PyObject *obj = PyDict_New(); PyObject *t = NULL; if (obj == NULL) return NULL; #define istat(__n, __d) \ do { \ t = PyInt_FromSsize_t(self->__n); \ if (!t) \ goto bail; \ if (PyDict_SetItemString(obj, __d, t) == -1) \ goto bail; \ Py_DECREF(t); \ } while (0) if (self->added) { Py_ssize_t len = PyList_GET_SIZE(self->added); t = PyInt_FromSsize_t(len); if (!t) goto bail; if (PyDict_SetItemString(obj, "index entries added", t) == -1) goto bail; Py_DECREF(t); } if (self->raw_length != self->length) istat(raw_length, "revs on disk"); istat(length, "revs in memory"); istat(ntlookups, "node trie lookups"); istat(ntmisses, "node trie misses"); istat(ntrev, "node trie last rev scanned"); if (self->ntinitialized) { istat(nt.capacity, "node trie capacity"); istat(nt.depth, "node trie depth"); istat(nt.length, "node trie count"); istat(nt.splits, "node trie splits"); } #undef istat return obj; bail: Py_XDECREF(obj); Py_XDECREF(t); return NULL; } /* * When we cache a list, we want to be sure the caller can't mutate * the cached copy. */ static PyObject *list_copy(PyObject *list) { Py_ssize_t len = PyList_GET_SIZE(list); PyObject *newlist = PyList_New(len); Py_ssize_t i; if (newlist == NULL) return NULL; for (i = 0; i < len; i++) { PyObject *obj = PyList_GET_ITEM(list, i); Py_INCREF(obj); PyList_SET_ITEM(newlist, i, obj); } return newlist; } static int check_filter(PyObject *filter, Py_ssize_t arg) { if (filter) { PyObject *arglist, *result; int isfiltered; arglist = Py_BuildValue("(n)", arg); if (!arglist) { return -1; } result = PyEval_CallObject(filter, arglist); Py_DECREF(arglist); if (!result) { return -1; } /* PyObject_IsTrue returns 1 if true, 0 if false, -1 if error, * same as this function, so we can just return it directly.*/ isfiltered = PyObject_IsTrue(result); Py_DECREF(result); return isfiltered; } else { return 0; } } static Py_ssize_t add_roots_get_min(indexObject *self, PyObject *list, Py_ssize_t marker, char *phases) { PyObject *iter = NULL; PyObject *iter_item = NULL; Py_ssize_t min_idx = index_length(self) + 2; long iter_item_long; if (PyList_GET_SIZE(list) != 0) { iter = PyObject_GetIter(list); if (iter == NULL) return -2; while ((iter_item = PyIter_Next(iter))) { iter_item_long = PyInt_AS_LONG(iter_item); Py_DECREF(iter_item); if (iter_item_long < min_idx) min_idx = iter_item_long; phases[iter_item_long] = (char)marker; } Py_DECREF(iter); } return min_idx; } static inline void set_phase_from_parents(char *phases, int parent_1, int parent_2, Py_ssize_t i) { if (parent_1 >= 0 && phases[parent_1] > phases[i]) phases[i] = phases[parent_1]; if (parent_2 >= 0 && phases[parent_2] > phases[i]) phases[i] = phases[parent_2]; } static PyObject *reachableroots2(indexObject *self, PyObject *args) { /* Input */ long minroot; PyObject *includepatharg = NULL; int includepath = 0; /* heads and roots are lists */ PyObject *heads = NULL; PyObject *roots = NULL; PyObject *reachable = NULL; PyObject *val; Py_ssize_t len = index_length(self); long revnum; Py_ssize_t k; Py_ssize_t i; Py_ssize_t l; int r; int parents[2]; /* Internal data structure: * tovisit: array of length len+1 (all revs + nullrev), filled upto lentovisit * revstates: array of length len+1 (all revs + nullrev) */ int *tovisit = NULL; long lentovisit = 0; enum { RS_SEEN = 1, RS_ROOT = 2, RS_REACHABLE = 4 }; char *revstates = NULL; /* Get arguments */ if (!PyArg_ParseTuple(args, "lO!O!O!", &minroot, &PyList_Type, &heads, &PyList_Type, &roots, &PyBool_Type, &includepatharg)) goto bail; if (includepatharg == Py_True) includepath = 1; /* Initialize return set */ reachable = PyList_New(0); if (reachable == NULL) goto bail; /* Initialize internal datastructures */ tovisit = (int *)malloc((len + 1) * sizeof(int)); if (tovisit == NULL) { PyErr_NoMemory(); goto bail; } revstates = (char *)calloc(len + 1, 1); if (revstates == NULL) { PyErr_NoMemory(); goto bail; } l = PyList_GET_SIZE(roots); for (i = 0; i < l; i++) { revnum = PyInt_AsLong(PyList_GET_ITEM(roots, i)); if (revnum == -1 && PyErr_Occurred()) goto bail; /* If root is out of range, e.g. wdir(), it must be unreachable * from heads. So we can just ignore it. */ if (revnum + 1 < 0 || revnum + 1 >= len + 1) continue; revstates[revnum + 1] |= RS_ROOT; } /* Populate tovisit with all the heads */ l = PyList_GET_SIZE(heads); for (i = 0; i < l; i++) { revnum = PyInt_AsLong(PyList_GET_ITEM(heads, i)); if (revnum == -1 && PyErr_Occurred()) goto bail; if (revnum + 1 < 0 || revnum + 1 >= len + 1) { PyErr_SetString(PyExc_IndexError, "head out of range"); goto bail; } if (!(revstates[revnum + 1] & RS_SEEN)) { tovisit[lentovisit++] = (int)revnum; revstates[revnum + 1] |= RS_SEEN; } } /* Visit the tovisit list and find the reachable roots */ k = 0; while (k < lentovisit) { /* Add the node to reachable if it is a root*/ revnum = tovisit[k++]; if (revstates[revnum + 1] & RS_ROOT) { revstates[revnum + 1] |= RS_REACHABLE; val = PyInt_FromLong(revnum); if (val == NULL) goto bail; r = PyList_Append(reachable, val); Py_DECREF(val); if (r < 0) goto bail; if (includepath == 0) continue; } /* Add its parents to the list of nodes to visit */ if (revnum == -1) continue; r = index_get_parents(self, revnum, parents, (int)len - 1); if (r < 0) goto bail; for (i = 0; i < 2; i++) { if (!(revstates[parents[i] + 1] & RS_SEEN) && parents[i] >= minroot) { tovisit[lentovisit++] = parents[i]; revstates[parents[i] + 1] |= RS_SEEN; } } } /* Find all the nodes in between the roots we found and the heads * and add them to the reachable set */ if (includepath == 1) { long minidx = minroot; if (minidx < 0) minidx = 0; for (i = minidx; i < len; i++) { if (!(revstates[i + 1] & RS_SEEN)) continue; r = index_get_parents(self, i, parents, (int)len - 1); /* Corrupted index file, error is set from * index_get_parents */ if (r < 0) goto bail; if (((revstates[parents[0] + 1] | revstates[parents[1] + 1]) & RS_REACHABLE) && !(revstates[i + 1] & RS_REACHABLE)) { revstates[i + 1] |= RS_REACHABLE; val = PyInt_FromSsize_t(i); if (val == NULL) goto bail; r = PyList_Append(reachable, val); Py_DECREF(val); if (r < 0) goto bail; } } } free(revstates); free(tovisit); return reachable; bail: Py_XDECREF(reachable); free(revstates); free(tovisit); return NULL; } static PyObject *compute_phases_map_sets(indexObject *self, PyObject *args) { PyObject *roots = Py_None; PyObject *ret = NULL; PyObject *phasessize = NULL; PyObject *phaseroots = NULL; PyObject *phaseset = NULL; PyObject *phasessetlist = NULL; PyObject *rev = NULL; Py_ssize_t len = index_length(self); Py_ssize_t numphase = 0; Py_ssize_t minrevallphases = 0; Py_ssize_t minrevphase = 0; Py_ssize_t i = 0; char *phases = NULL; long phase; if (!PyArg_ParseTuple(args, "O", &roots)) goto done; if (roots == NULL || !PyList_Check(roots)) { PyErr_SetString(PyExc_TypeError, "roots must be a list"); goto done; } phases = calloc(len, 1); /* phase per rev: {0: public, 1: draft, 2: secret} */ if (phases == NULL) { PyErr_NoMemory(); goto done; } /* Put the phase information of all the roots in phases */ numphase = PyList_GET_SIZE(roots)+1; minrevallphases = len + 1; phasessetlist = PyList_New(numphase); if (phasessetlist == NULL) goto done; PyList_SET_ITEM(phasessetlist, 0, Py_None); Py_INCREF(Py_None); for (i = 0; i < numphase-1; i++) { phaseroots = PyList_GET_ITEM(roots, i); phaseset = PySet_New(NULL); if (phaseset == NULL) goto release; PyList_SET_ITEM(phasessetlist, i+1, phaseset); if (!PyList_Check(phaseroots)) { PyErr_SetString(PyExc_TypeError, "roots item must be a list"); goto release; } minrevphase = add_roots_get_min(self, phaseroots, i+1, phases); if (minrevphase == -2) /* Error from add_roots_get_min */ goto release; minrevallphases = MIN(minrevallphases, minrevphase); } /* Propagate the phase information from the roots to the revs */ if (minrevallphases != -1) { int parents[2]; for (i = minrevallphases; i < len; i++) { if (index_get_parents(self, i, parents, (int)len - 1) < 0) goto release; set_phase_from_parents(phases, parents[0], parents[1], i); } } /* Transform phase list to a python list */ phasessize = PyInt_FromSsize_t(len); if (phasessize == NULL) goto release; for (i = 0; i < len; i++) { phase = phases[i]; /* We only store the sets of phase for non public phase, the public phase * is computed as a difference */ if (phase != 0) { phaseset = PyList_GET_ITEM(phasessetlist, phase); rev = PyInt_FromSsize_t(i); if (rev == NULL) goto release; PySet_Add(phaseset, rev); Py_XDECREF(rev); } } ret = PyTuple_Pack(2, phasessize, phasessetlist); release: Py_XDECREF(phasessize); Py_XDECREF(phasessetlist); done: free(phases); return ret; } static PyObject *index_headrevs(indexObject *self, PyObject *args) { Py_ssize_t i, j, len; char *nothead = NULL; PyObject *heads = NULL; PyObject *filter = NULL; PyObject *filteredrevs = Py_None; if (!PyArg_ParseTuple(args, "|O", &filteredrevs)) { return NULL; } if (self->headrevs && filteredrevs == self->filteredrevs) return list_copy(self->headrevs); Py_DECREF(self->filteredrevs); self->filteredrevs = filteredrevs; Py_INCREF(filteredrevs); if (filteredrevs != Py_None) { filter = PyObject_GetAttrString(filteredrevs, "__contains__"); if (!filter) { PyErr_SetString(PyExc_TypeError, "filteredrevs has no attribute __contains__"); goto bail; } } len = index_length(self); heads = PyList_New(0); if (heads == NULL) goto bail; if (len == 0) { PyObject *nullid = PyInt_FromLong(-1); if (nullid == NULL || PyList_Append(heads, nullid) == -1) { Py_XDECREF(nullid); goto bail; } goto done; } nothead = calloc(len, 1); if (nothead == NULL) { PyErr_NoMemory(); goto bail; } for (i = len - 1; i >= 0; i--) { int isfiltered; int parents[2]; /* If nothead[i] == 1, it means we've seen an unfiltered child of this * node already, and therefore this node is not filtered. So we can skip * the expensive check_filter step. */ if (nothead[i] != 1) { isfiltered = check_filter(filter, i); if (isfiltered == -1) { PyErr_SetString(PyExc_TypeError, "unable to check filter"); goto bail; } if (isfiltered) { nothead[i] = 1; continue; } } if (index_get_parents(self, i, parents, (int)len - 1) < 0) goto bail; for (j = 0; j < 2; j++) { if (parents[j] >= 0) nothead[parents[j]] = 1; } } for (i = 0; i < len; i++) { PyObject *head; if (nothead[i]) continue; head = PyInt_FromSsize_t(i); if (head == NULL || PyList_Append(heads, head) == -1) { Py_XDECREF(head); goto bail; } } done: self->headrevs = heads; Py_XDECREF(filter); free(nothead); return list_copy(self->headrevs); bail: Py_XDECREF(filter); Py_XDECREF(heads); free(nothead); return NULL; } /** * Obtain the base revision index entry. * * Callers must ensure that rev >= 0 or illegal memory access may occur. */ static inline int index_baserev(indexObject *self, int rev) { const char *data; if (rev >= self->length) { PyObject *tuple = PyList_GET_ITEM(self->added, rev - self->length); return (int)PyInt_AS_LONG(PyTuple_GET_ITEM(tuple, 3)); } else { data = index_deref(self, rev); if (data == NULL) { return -2; } return getbe32(data + 16); } } static PyObject *index_deltachain(indexObject *self, PyObject *args) { int rev, generaldelta; PyObject *stoparg; int stoprev, iterrev, baserev = -1; int stopped; PyObject *chain = NULL, *result = NULL; const Py_ssize_t length = index_length(self); if (!PyArg_ParseTuple(args, "iOi", &rev, &stoparg, &generaldelta)) { return NULL; } if (PyInt_Check(stoparg)) { stoprev = (int)PyInt_AsLong(stoparg); if (stoprev == -1 && PyErr_Occurred()) { return NULL; } } else if (stoparg == Py_None) { stoprev = -2; } else { PyErr_SetString(PyExc_ValueError, "stoprev must be integer or None"); return NULL; } if (rev < 0 || rev >= length) { PyErr_SetString(PyExc_ValueError, "revlog index out of range"); return NULL; } chain = PyList_New(0); if (chain == NULL) { return NULL; } baserev = index_baserev(self, rev); /* This should never happen. */ if (baserev <= -2) { /* Error should be set by index_deref() */ assert(PyErr_Occurred()); goto bail; } iterrev = rev; while (iterrev != baserev && iterrev != stoprev) { PyObject *value = PyInt_FromLong(iterrev); if (value == NULL) { goto bail; } if (PyList_Append(chain, value)) { Py_DECREF(value); goto bail; } Py_DECREF(value); if (generaldelta) { iterrev = baserev; } else { iterrev--; } if (iterrev < 0) { break; } if (iterrev >= length) { PyErr_SetString(PyExc_IndexError, "revision outside index"); return NULL; } baserev = index_baserev(self, iterrev); /* This should never happen. */ if (baserev <= -2) { /* Error should be set by index_deref() */ assert(PyErr_Occurred()); goto bail; } } if (iterrev == stoprev) { stopped = 1; } else { PyObject *value = PyInt_FromLong(iterrev); if (value == NULL) { goto bail; } if (PyList_Append(chain, value)) { Py_DECREF(value); goto bail; } Py_DECREF(value); stopped = 0; } if (PyList_Reverse(chain)) { goto bail; } result = Py_BuildValue("OO", chain, stopped ? Py_True : Py_False); Py_DECREF(chain); return result; bail: Py_DECREF(chain); return NULL; } static inline int nt_level(const char *node, Py_ssize_t level) { int v = node[level>>1]; if (!(level & 1)) v >>= 4; return v & 0xf; } /* * Return values: * * -4: match is ambiguous (multiple candidates) * -2: not found * rest: valid rev */ static int nt_find(nodetree *self, const char *node, Py_ssize_t nodelen, int hex) { int (*getnybble)(const char *, Py_ssize_t) = hex ? hexdigit : nt_level; int level, maxlevel, off; if (nodelen == 20 && node[0] == '\0' && memcmp(node, nullid, 20) == 0) return -1; if (hex) maxlevel = nodelen > 40 ? 40 : (int)nodelen; else maxlevel = nodelen > 20 ? 40 : ((int)nodelen * 2); for (level = off = 0; level < maxlevel; level++) { int k = getnybble(node, level); nodetreenode *n = &self->nodes[off]; int v = n->children[k]; if (v < 0) { const char *n; Py_ssize_t i; v = -(v + 2); n = index_node(self->index, v); if (n == NULL) return -2; for (i = level; i < maxlevel; i++) if (getnybble(node, i) != nt_level(n, i)) return -2; return v; } if (v == 0) return -2; off = v; } /* multiple matches against an ambiguous prefix */ return -4; } static int nt_new(nodetree *self) { if (self->length == self->capacity) { unsigned newcapacity; nodetreenode *newnodes; newcapacity = self->capacity * 2; if (newcapacity >= INT_MAX / sizeof(nodetreenode)) { PyErr_SetString(PyExc_MemoryError, "overflow in nt_new"); return -1; } newnodes = realloc(self->nodes, newcapacity * sizeof(nodetreenode)); if (newnodes == NULL) { PyErr_SetString(PyExc_MemoryError, "out of memory"); return -1; } self->capacity = newcapacity; self->nodes = newnodes; memset(&self->nodes[self->length], 0, sizeof(nodetreenode) * (self->capacity - self->length)); } return self->length++; } static int nt_insert(nodetree *self, const char *node, int rev) { int level = 0; int off = 0; while (level < 40) { int k = nt_level(node, level); nodetreenode *n; int v; n = &self->nodes[off]; v = n->children[k]; if (v == 0) { n->children[k] = -rev - 2; return 0; } if (v < 0) { const char *oldnode = index_node_existing(self->index, -(v + 2)); int noff; if (oldnode == NULL) return -1; if (!memcmp(oldnode, node, 20)) { n->children[k] = -rev - 2; return 0; } noff = nt_new(self); if (noff == -1) return -1; /* self->nodes may have been changed by realloc */ self->nodes[off].children[k] = noff; off = noff; n = &self->nodes[off]; n->children[nt_level(oldnode, ++level)] = v; if (level > self->depth) self->depth = level; self->splits += 1; } else { level += 1; off = v; } } return -1; } static PyObject *ntobj_insert(nodetreeObject *self, PyObject *args) { Py_ssize_t rev; const char *node; Py_ssize_t length; if (!PyArg_ParseTuple(args, "n", &rev)) return NULL; length = index_length(self->nt.index); if (rev < 0 || rev >= length) { PyErr_SetString(PyExc_ValueError, "revlog index out of range"); return NULL; } node = index_node_existing(self->nt.index, rev); if (nt_insert(&self->nt, node, (int)rev) == -1) return NULL; Py_RETURN_NONE; } static int nt_delete_node(nodetree *self, const char *node) { /* rev==-2 happens to get encoded as 0, which is interpreted as not set */ return nt_insert(self, node, -2); } static int nt_init(nodetree *self, indexObject *index, unsigned capacity) { /* Initialize before overflow-checking to avoid nt_dealloc() crash. */ self->nodes = NULL; self->index = index; /* The input capacity is in terms of revisions, while the field is in * terms of nodetree nodes. */ self->capacity = (capacity < 4 ? 4 : capacity / 2); self->depth = 0; self->splits = 0; if ((size_t)self->capacity > INT_MAX / sizeof(nodetreenode)) { PyErr_SetString(PyExc_ValueError, "overflow in init_nt"); return -1; } self->nodes = calloc(self->capacity, sizeof(nodetreenode)); if (self->nodes == NULL) { PyErr_NoMemory(); return -1; } self->length = 1; return 0; } static PyTypeObject indexType; static int ntobj_init(nodetreeObject *self, PyObject *args) { PyObject *index; unsigned capacity; if (!PyArg_ParseTuple(args, "O!I", &indexType, &index, &capacity)) return -1; Py_INCREF(index); return nt_init(&self->nt, (indexObject*)index, capacity); } static int nt_partialmatch(nodetree *self, const char *node, Py_ssize_t nodelen) { return nt_find(self, node, nodelen, 1); } /* * Find the length of the shortest unique prefix of node. * * Return values: * * -3: error (exception set) * -2: not found (no exception set) * rest: length of shortest prefix */ static int nt_shortest(nodetree *self, const char *node) { int level, off; for (level = off = 0; level < 40; level++) { int k, v; nodetreenode *n = &self->nodes[off]; k = nt_level(node, level); v = n->children[k]; if (v < 0) { const char *n; v = -(v + 2); n = index_node_existing(self->index, v); if (n == NULL) return -3; if (memcmp(node, n, 20) != 0) /* * Found a unique prefix, but it wasn't for the * requested node (i.e the requested node does * not exist). */ return -2; return level + 1; } if (v == 0) return -2; off = v; } /* * The node was still not unique after 40 hex digits, so this won't * happen. Also, if we get here, then there's a programming error in * this file that made us insert a node longer than 40 hex digits. */ PyErr_SetString(PyExc_Exception, "broken node tree"); return -3; } static PyObject *ntobj_shortest(nodetreeObject *self, PyObject *args) { PyObject *val; char *node; int length; if (!PyArg_ParseTuple(args, "O", &val)) return NULL; if (node_check(val, &node) == -1) return NULL; length = nt_shortest(&self->nt, node); if (length == -3) return NULL; if (length == -2) { raise_revlog_error(); return NULL; } return PyInt_FromLong(length); } static void nt_dealloc(nodetree *self) { free(self->nodes); self->nodes = NULL; } static void ntobj_dealloc(nodetreeObject *self) { Py_XDECREF(self->nt.index); nt_dealloc(&self->nt); PyObject_Del(self); } static PyMethodDef ntobj_methods[] = { {"insert", (PyCFunction)ntobj_insert, METH_VARARGS, "insert an index entry"}, {"shortest", (PyCFunction)ntobj_shortest, METH_VARARGS, "find length of shortest hex nodeid of a binary ID"}, {NULL} /* Sentinel */ }; static PyTypeObject nodetreeType = { PyVarObject_HEAD_INIT(NULL, 0) /* header */ "parsers.nodetree", /* tp_name */ sizeof(nodetreeObject) , /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)ntobj_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ 0, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ "nodetree", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ ntobj_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)ntobj_init, /* tp_init */ 0, /* tp_alloc */ }; static int index_init_nt(indexObject *self) { if (!self->ntinitialized) { if (nt_init(&self->nt, self, (int)self->raw_length) == -1) { nt_dealloc(&self->nt); return -1; } if (nt_insert(&self->nt, nullid, -1) == -1) { nt_dealloc(&self->nt); return -1; } self->ntinitialized = 1; self->ntrev = (int)index_length(self); self->ntlookups = 1; self->ntmisses = 0; } return 0; } /* * Return values: * * -3: error (exception set) * -2: not found (no exception set) * rest: valid rev */ static int index_find_node(indexObject *self, const char *node, Py_ssize_t nodelen) { int rev; if (index_init_nt(self) == -1) return -3; self->ntlookups++; rev = nt_find(&self->nt, node, nodelen, 0); if (rev >= -1) return rev; /* * For the first handful of lookups, we scan the entire index, * and cache only the matching nodes. This optimizes for cases * like "hg tip", where only a few nodes are accessed. * * After that, we cache every node we visit, using a single * scan amortized over multiple lookups. This gives the best * bulk performance, e.g. for "hg log". */ if (self->ntmisses++ < 4) { for (rev = self->ntrev - 1; rev >= 0; rev--) { const char *n = index_node_existing(self, rev); if (n == NULL) return -3; if (memcmp(node, n, nodelen > 20 ? 20 : nodelen) == 0) { if (nt_insert(&self->nt, n, rev) == -1) return -3; break; } } } else { for (rev = self->ntrev - 1; rev >= 0; rev--) { const char *n = index_node_existing(self, rev); if (n == NULL) return -3; if (nt_insert(&self->nt, n, rev) == -1) { self->ntrev = rev + 1; return -3; } if (memcmp(node, n, nodelen > 20 ? 20 : nodelen) == 0) { break; } } self->ntrev = rev; } if (rev >= 0) return rev; return -2; } static PyObject *index_getitem(indexObject *self, PyObject *value) { char *node; int rev; if (PyInt_Check(value)) return index_get(self, PyInt_AS_LONG(value)); if (node_check(value, &node) == -1) return NULL; rev = index_find_node(self, node, 20); if (rev >= -1) return PyInt_FromLong(rev); if (rev == -2) raise_revlog_error(); return NULL; } /* * Fully populate the radix tree. */ static int index_populate_nt(indexObject *self) { int rev; if (self->ntrev > 0) { for (rev = self->ntrev - 1; rev >= 0; rev--) { const char *n = index_node_existing(self, rev); if (n == NULL) return -1; if (nt_insert(&self->nt, n, rev) == -1) return -1; } self->ntrev = -1; } return 0; } static PyObject *index_partialmatch(indexObject *self, PyObject *args) { const char *fullnode; int nodelen; char *node; int rev, i; if (!PyArg_ParseTuple(args, PY23("s#", "y#"), &node, &nodelen)) return NULL; if (nodelen < 1) { PyErr_SetString(PyExc_ValueError, "key too short"); return NULL; } if (nodelen > 40) { PyErr_SetString(PyExc_ValueError, "key too long"); return NULL; } for (i = 0; i < nodelen; i++) hexdigit(node, i); if (PyErr_Occurred()) { /* input contains non-hex characters */ PyErr_Clear(); Py_RETURN_NONE; } if (index_init_nt(self) == -1) return NULL; if (index_populate_nt(self) == -1) return NULL; rev = nt_partialmatch(&self->nt, node, nodelen); switch (rev) { case -4: raise_revlog_error(); return NULL; case -2: Py_RETURN_NONE; case -1: return PyBytes_FromStringAndSize(nullid, 20); } fullnode = index_node_existing(self, rev); if (fullnode == NULL) { return NULL; } return PyBytes_FromStringAndSize(fullnode, 20); } static PyObject *index_shortest(indexObject *self, PyObject *args) { PyObject *val; char *node; int length; if (!PyArg_ParseTuple(args, "O", &val)) return NULL; if (node_check(val, &node) == -1) return NULL; self->ntlookups++; if (index_init_nt(self) == -1) return NULL; if (index_populate_nt(self) == -1) return NULL; length = nt_shortest(&self->nt, node); if (length == -3) return NULL; if (length == -2) { raise_revlog_error(); return NULL; } return PyInt_FromLong(length); } static PyObject *index_m_get(indexObject *self, PyObject *args) { PyObject *val; char *node; int rev; if (!PyArg_ParseTuple(args, "O", &val)) return NULL; if (node_check(val, &node) == -1) return NULL; rev = index_find_node(self, node, 20); if (rev == -3) return NULL; if (rev == -2) Py_RETURN_NONE; return PyInt_FromLong(rev); } static int index_contains(indexObject *self, PyObject *value) { char *node; if (PyInt_Check(value)) { long rev = PyInt_AS_LONG(value); return rev >= -1 && rev < index_length(self); } if (node_check(value, &node) == -1) return -1; switch (index_find_node(self, node, 20)) { case -3: return -1; case -2: return 0; default: return 1; } } typedef uint64_t bitmask; /* * Given a disjoint set of revs, return all candidates for the * greatest common ancestor. In revset notation, this is the set * "heads(::a and ::b and ...)" */ static PyObject *find_gca_candidates(indexObject *self, const int *revs, int revcount) { const bitmask allseen = (1ull << revcount) - 1; const bitmask poison = 1ull << revcount; PyObject *gca = PyList_New(0); int i, v, interesting; int maxrev = -1; bitmask sp; bitmask *seen; if (gca == NULL) return PyErr_NoMemory(); for (i = 0; i < revcount; i++) { if (revs[i] > maxrev) maxrev = revs[i]; } seen = calloc(sizeof(*seen), maxrev + 1); if (seen == NULL) { Py_DECREF(gca); return PyErr_NoMemory(); } for (i = 0; i < revcount; i++) seen[revs[i]] = 1ull << i; interesting = revcount; for (v = maxrev; v >= 0 && interesting; v--) { bitmask sv = seen[v]; int parents[2]; if (!sv) continue; if (sv < poison) { interesting -= 1; if (sv == allseen) { PyObject *obj = PyInt_FromLong(v); if (obj == NULL) goto bail; if (PyList_Append(gca, obj) == -1) { Py_DECREF(obj); goto bail; } sv |= poison; for (i = 0; i < revcount; i++) { if (revs[i] == v) goto done; } } } if (index_get_parents(self, v, parents, maxrev) < 0) goto bail; for (i = 0; i < 2; i++) { int p = parents[i]; if (p == -1) continue; sp = seen[p]; if (sv < poison) { if (sp == 0) { seen[p] = sv; interesting++; } else if (sp != sv) seen[p] |= sv; } else { if (sp && sp < poison) interesting--; seen[p] = sv; } } } done: free(seen); return gca; bail: free(seen); Py_XDECREF(gca); return NULL; } /* * Given a disjoint set of revs, return the subset with the longest * path to the root. */ static PyObject *find_deepest(indexObject *self, PyObject *revs) { const Py_ssize_t revcount = PyList_GET_SIZE(revs); static const Py_ssize_t capacity = 24; int *depth, *interesting = NULL; int i, j, v, ninteresting; PyObject *dict = NULL, *keys = NULL; long *seen = NULL; int maxrev = -1; long final; if (revcount > capacity) { PyErr_Format(PyExc_OverflowError, "bitset size (%ld) > capacity (%ld)", (long)revcount, (long)capacity); return NULL; } for (i = 0; i < revcount; i++) { int n = (int)PyInt_AsLong(PyList_GET_ITEM(revs, i)); if (n > maxrev) maxrev = n; } depth = calloc(sizeof(*depth), maxrev + 1); if (depth == NULL) return PyErr_NoMemory(); seen = calloc(sizeof(*seen), maxrev + 1); if (seen == NULL) { PyErr_NoMemory(); goto bail; } interesting = calloc(sizeof(*interesting), ((size_t)1) << revcount); if (interesting == NULL) { PyErr_NoMemory(); goto bail; } if (PyList_Sort(revs) == -1) goto bail; for (i = 0; i < revcount; i++) { int n = (int)PyInt_AsLong(PyList_GET_ITEM(revs, i)); long b = 1l << i; depth[n] = 1; seen[n] = b; interesting[b] = 1; } /* invariant: ninteresting is the number of non-zero entries in * interesting. */ ninteresting = (int)revcount; for (v = maxrev; v >= 0 && ninteresting > 1; v--) { int dv = depth[v]; int parents[2]; long sv; if (dv == 0) continue; sv = seen[v]; if (index_get_parents(self, v, parents, maxrev) < 0) goto bail; for (i = 0; i < 2; i++) { int p = parents[i]; long sp; int dp; if (p == -1) continue; dp = depth[p]; sp = seen[p]; if (dp <= dv) { depth[p] = dv + 1; if (sp != sv) { interesting[sv] += 1; seen[p] = sv; if (sp) { interesting[sp] -= 1; if (interesting[sp] == 0) ninteresting -= 1; } } } else if (dv == dp - 1) { long nsp = sp | sv; if (nsp == sp) continue; seen[p] = nsp; interesting[sp] -= 1; if (interesting[sp] == 0) ninteresting -= 1; if (interesting[nsp] == 0) ninteresting += 1; interesting[nsp] += 1; } } interesting[sv] -= 1; if (interesting[sv] == 0) ninteresting -= 1; } final = 0; j = ninteresting; for (i = 0; i < (int)(2 << revcount) && j > 0; i++) { if (interesting[i] == 0) continue; final |= i; j -= 1; } if (final == 0) { keys = PyList_New(0); goto bail; } dict = PyDict_New(); if (dict == NULL) goto bail; for (i = 0; i < revcount; i++) { PyObject *key; if ((final & (1 << i)) == 0) continue; key = PyList_GET_ITEM(revs, i); Py_INCREF(key); Py_INCREF(Py_None); if (PyDict_SetItem(dict, key, Py_None) == -1) { Py_DECREF(key); Py_DECREF(Py_None); goto bail; } } keys = PyDict_Keys(dict); bail: free(depth); free(seen); free(interesting); Py_XDECREF(dict); return keys; } /* * Given a (possibly overlapping) set of revs, return all the * common ancestors heads: heads(::args[0] and ::a[1] and ...) */ static PyObject *index_commonancestorsheads(indexObject *self, PyObject *args) { PyObject *ret = NULL; Py_ssize_t argcount, i, len; bitmask repeat = 0; int revcount = 0; int *revs; argcount = PySequence_Length(args); revs = PyMem_Malloc(argcount * sizeof(*revs)); if (argcount > 0 && revs == NULL) return PyErr_NoMemory(); len = index_length(self); for (i = 0; i < argcount; i++) { static const int capacity = 24; PyObject *obj = PySequence_GetItem(args, i); bitmask x; long val; if (!PyInt_Check(obj)) { PyErr_SetString(PyExc_TypeError, "arguments must all be ints"); Py_DECREF(obj); goto bail; } val = PyInt_AsLong(obj); Py_DECREF(obj); if (val == -1) { ret = PyList_New(0); goto done; } if (val < 0 || val >= len) { PyErr_SetString(PyExc_IndexError, "index out of range"); goto bail; } /* this cheesy bloom filter lets us avoid some more * expensive duplicate checks in the common set-is-disjoint * case */ x = 1ull << (val & 0x3f); if (repeat & x) { int k; for (k = 0; k < revcount; k++) { if (val == revs[k]) goto duplicate; } } else repeat |= x; if (revcount >= capacity) { PyErr_Format(PyExc_OverflowError, "bitset size (%d) > capacity (%d)", revcount, capacity); goto bail; } revs[revcount++] = (int)val; duplicate:; } if (revcount == 0) { ret = PyList_New(0); goto done; } if (revcount == 1) { PyObject *obj; ret = PyList_New(1); if (ret == NULL) goto bail; obj = PyInt_FromLong(revs[0]); if (obj == NULL) goto bail; PyList_SET_ITEM(ret, 0, obj); goto done; } ret = find_gca_candidates(self, revs, revcount); if (ret == NULL) goto bail; done: PyMem_Free(revs); return ret; bail: PyMem_Free(revs); Py_XDECREF(ret); return NULL; } /* * Given a (possibly overlapping) set of revs, return the greatest * common ancestors: those with the longest path to the root. */ static PyObject *index_ancestors(indexObject *self, PyObject *args) { PyObject *ret; PyObject *gca = index_commonancestorsheads(self, args); if (gca == NULL) return NULL; if (PyList_GET_SIZE(gca) <= 1) { return gca; } ret = find_deepest(self, gca); Py_DECREF(gca); return ret; } /* * Invalidate any trie entries introduced by added revs. */ static void index_invalidate_added(indexObject *self, Py_ssize_t start) { Py_ssize_t i, len = PyList_GET_SIZE(self->added); for (i = start; i < len; i++) { PyObject *tuple = PyList_GET_ITEM(self->added, i); PyObject *node = PyTuple_GET_ITEM(tuple, 7); nt_delete_node(&self->nt, PyBytes_AS_STRING(node)); } if (start == 0) Py_CLEAR(self->added); } /* * Delete a numeric range of revs, which must be at the end of the * range, but exclude the sentinel nullid entry. */ static int index_slice_del(indexObject *self, PyObject *item) { Py_ssize_t start, stop, step, slicelength; Py_ssize_t length = index_length(self) + 1; int ret = 0; /* Argument changed from PySliceObject* to PyObject* in Python 3. */ #ifdef IS_PY3K if (PySlice_GetIndicesEx(item, length, &start, &stop, &step, &slicelength) < 0) #else if (PySlice_GetIndicesEx((PySliceObject*)item, length, &start, &stop, &step, &slicelength) < 0) #endif return -1; if (slicelength <= 0) return 0; if ((step < 0 && start < stop) || (step > 0 && start > stop)) stop = start; if (step < 0) { stop = start + 1; start = stop + step*(slicelength - 1) - 1; step = -step; } if (step != 1) { PyErr_SetString(PyExc_ValueError, "revlog index delete requires step size of 1"); return -1; } if (stop != length - 1) { PyErr_SetString(PyExc_IndexError, "revlog index deletion indices are invalid"); return -1; } if (start < self->length) { if (self->ntinitialized) { Py_ssize_t i; for (i = start + 1; i < self->length; i++) { const char *node = index_node_existing(self, i); if (node == NULL) return -1; nt_delete_node(&self->nt, node); } if (self->added) index_invalidate_added(self, 0); if (self->ntrev > start) self->ntrev = (int)start; } self->length = start; if (start < self->raw_length) { if (self->cache) { Py_ssize_t i; for (i = start; i < self->raw_length; i++) Py_CLEAR(self->cache[i]); } self->raw_length = start; } goto done; } if (self->ntinitialized) { index_invalidate_added(self, start - self->length); if (self->ntrev > start) self->ntrev = (int)start; } if (self->added) ret = PyList_SetSlice(self->added, start - self->length, PyList_GET_SIZE(self->added), NULL); done: Py_CLEAR(self->headrevs); return ret; } /* * Supported ops: * * slice deletion * string assignment (extend node->rev mapping) * string deletion (shrink node->rev mapping) */ static int index_assign_subscript(indexObject *self, PyObject *item, PyObject *value) { char *node; long rev; if (PySlice_Check(item) && value == NULL) return index_slice_del(self, item); if (node_check(item, &node) == -1) return -1; if (value == NULL) return self->ntinitialized ? nt_delete_node(&self->nt, node) : 0; rev = PyInt_AsLong(value); if (rev > INT_MAX || rev < 0) { if (!PyErr_Occurred()) PyErr_SetString(PyExc_ValueError, "rev out of range"); return -1; } if (index_init_nt(self) == -1) return -1; return nt_insert(&self->nt, node, (int)rev); } /* * Find all RevlogNG entries in an index that has inline data. Update * the optional "offsets" table with those entries. */ static Py_ssize_t inline_scan(indexObject *self, const char **offsets) { const char *data = (const char *)self->buf.buf; Py_ssize_t pos = 0; Py_ssize_t end = self->buf.len; long incr = v1_hdrsize; Py_ssize_t len = 0; while (pos + v1_hdrsize <= end && pos >= 0) { uint32_t comp_len; /* 3rd element of header is length of compressed inline data */ comp_len = getbe32(data + pos + 8); incr = v1_hdrsize + comp_len; if (offsets) offsets[len] = data + pos; len++; pos += incr; } if (pos != end) { if (!PyErr_Occurred()) PyErr_SetString(PyExc_ValueError, "corrupt index file"); return -1; } return len; } static int index_init(indexObject *self, PyObject *args) { PyObject *data_obj, *inlined_obj; Py_ssize_t size; /* Initialize before argument-checking to avoid index_dealloc() crash. */ self->raw_length = 0; self->added = NULL; self->cache = NULL; self->data = NULL; memset(&self->buf, 0, sizeof(self->buf)); self->headrevs = NULL; self->filteredrevs = Py_None; Py_INCREF(Py_None); self->ntinitialized = 0; self->offsets = NULL; if (!PyArg_ParseTuple(args, "OO", &data_obj, &inlined_obj)) return -1; if (!PyObject_CheckBuffer(data_obj)) { PyErr_SetString(PyExc_TypeError, "data does not support buffer interface"); return -1; } if (PyObject_GetBuffer(data_obj, &self->buf, PyBUF_SIMPLE) == -1) return -1; size = self->buf.len; self->inlined = inlined_obj && PyObject_IsTrue(inlined_obj); self->data = data_obj; self->ntlookups = self->ntmisses = 0; self->ntrev = -1; Py_INCREF(self->data); if (self->inlined) { Py_ssize_t len = inline_scan(self, NULL); if (len == -1) goto bail; self->raw_length = len; self->length = len; } else { if (size % v1_hdrsize) { PyErr_SetString(PyExc_ValueError, "corrupt index file"); goto bail; } self->raw_length = size / v1_hdrsize; self->length = self->raw_length; } return 0; bail: return -1; } static PyObject *index_nodemap(indexObject *self) { Py_INCREF(self); return (PyObject *)self; } static void _index_clearcaches(indexObject *self) { if (self->cache) { Py_ssize_t i; for (i = 0; i < self->raw_length; i++) Py_CLEAR(self->cache[i]); free(self->cache); self->cache = NULL; } if (self->offsets) { PyMem_Free((void *)self->offsets); self->offsets = NULL; } if (self->ntinitialized) { nt_dealloc(&self->nt); } self->ntinitialized = 0; Py_CLEAR(self->headrevs); } static PyObject *index_clearcaches(indexObject *self) { _index_clearcaches(self); self->ntrev = -1; self->ntlookups = self->ntmisses = 0; Py_RETURN_NONE; } static void index_dealloc(indexObject *self) { _index_clearcaches(self); Py_XDECREF(self->filteredrevs); if (self->buf.buf) { PyBuffer_Release(&self->buf); memset(&self->buf, 0, sizeof(self->buf)); } Py_XDECREF(self->data); Py_XDECREF(self->added); PyObject_Del(self); } static PySequenceMethods index_sequence_methods = { (lenfunc)index_length, /* sq_length */ 0, /* sq_concat */ 0, /* sq_repeat */ (ssizeargfunc)index_get, /* sq_item */ 0, /* sq_slice */ 0, /* sq_ass_item */ 0, /* sq_ass_slice */ (objobjproc)index_contains, /* sq_contains */ }; static PyMappingMethods index_mapping_methods = { (lenfunc)index_length, /* mp_length */ (binaryfunc)index_getitem, /* mp_subscript */ (objobjargproc)index_assign_subscript, /* mp_ass_subscript */ }; static PyMethodDef index_methods[] = { {"ancestors", (PyCFunction)index_ancestors, METH_VARARGS, "return the gca set of the given revs"}, {"commonancestorsheads", (PyCFunction)index_commonancestorsheads, METH_VARARGS, "return the heads of the common ancestors of the given revs"}, {"clearcaches", (PyCFunction)index_clearcaches, METH_NOARGS, "clear the index caches"}, {"get", (PyCFunction)index_m_get, METH_VARARGS, "get an index entry"}, {"computephasesmapsets", (PyCFunction)compute_phases_map_sets, METH_VARARGS, "compute phases"}, {"reachableroots2", (PyCFunction)reachableroots2, METH_VARARGS, "reachableroots"}, {"headrevs", (PyCFunction)index_headrevs, METH_VARARGS, "get head revisions"}, /* Can do filtering since 3.2 */ {"headrevsfiltered", (PyCFunction)index_headrevs, METH_VARARGS, "get filtered head revisions"}, /* Can always do filtering */ {"deltachain", (PyCFunction)index_deltachain, METH_VARARGS, "determine revisions with deltas to reconstruct fulltext"}, {"append", (PyCFunction)index_append, METH_O, "append an index entry"}, {"partialmatch", (PyCFunction)index_partialmatch, METH_VARARGS, "match a potentially ambiguous node ID"}, {"shortest", (PyCFunction)index_shortest, METH_VARARGS, "find length of shortest hex nodeid of a binary ID"}, {"stats", (PyCFunction)index_stats, METH_NOARGS, "stats for the index"}, {NULL} /* Sentinel */ }; static PyGetSetDef index_getset[] = { {"nodemap", (getter)index_nodemap, NULL, "nodemap", NULL}, {NULL} /* Sentinel */ }; static PyTypeObject indexType = { PyVarObject_HEAD_INIT(NULL, 0) /* header */ "parsers.index", /* tp_name */ sizeof(indexObject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)index_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ 0, /* tp_repr */ 0, /* tp_as_number */ &index_sequence_methods, /* tp_as_sequence */ &index_mapping_methods, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ "revlog index", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ index_methods, /* tp_methods */ 0, /* tp_members */ index_getset, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)index_init, /* tp_init */ 0, /* tp_alloc */ }; /* * returns a tuple of the form (index, index, cache) with elements as * follows: * * index: an index object that lazily parses RevlogNG records * cache: if data is inlined, a tuple (0, index_file_content), else None * index_file_content could be a string, or a buffer * * added complications are for backwards compatibility */ PyObject *parse_index2(PyObject *self, PyObject *args) { PyObject *tuple = NULL, *cache = NULL; indexObject *idx; int ret; idx = PyObject_New(indexObject, &indexType); if (idx == NULL) goto bail; ret = index_init(idx, args); if (ret == -1) goto bail; if (idx->inlined) { cache = Py_BuildValue("iO", 0, idx->data); if (cache == NULL) goto bail; } else { cache = Py_None; Py_INCREF(cache); } tuple = Py_BuildValue("NN", idx, cache); if (!tuple) goto bail; return tuple; bail: Py_XDECREF(idx); Py_XDECREF(cache); Py_XDECREF(tuple); return NULL; } #ifdef WITH_RUST /* rustlazyancestors: iteration over ancestors implemented in Rust * * This class holds a reference to an index and to the Rust iterator. */ typedef struct rustlazyancestorsObjectStruct rustlazyancestorsObject; struct rustlazyancestorsObjectStruct { PyObject_HEAD /* Type-specific fields go here. */ indexObject *index; /* Ref kept to avoid GC'ing the index */ void *iter; /* Rust iterator */ }; /* FFI exposed from Rust code */ rustlazyancestorsObject *rustlazyancestors_init( indexObject *index, /* to pass index_get_parents() */ int (*)(indexObject *, Py_ssize_t, int*, int), /* intrevs vector */ int initrevslen, long *initrevs, long stoprev, int inclusive); void rustlazyancestors_drop(rustlazyancestorsObject *self); int rustlazyancestors_next(rustlazyancestorsObject *self); int rustlazyancestors_contains(rustlazyancestorsObject *self, long rev); /* CPython instance methods */ static int rustla_init(rustlazyancestorsObject *self, PyObject *args) { PyObject *initrevsarg = NULL; PyObject *inclusivearg = NULL; long stoprev = 0; long *initrevs = NULL; int inclusive = 0; Py_ssize_t i; indexObject *index; if (!PyArg_ParseTuple(args, "O!O!lO!", &indexType, &index, &PyList_Type, &initrevsarg, &stoprev, &PyBool_Type, &inclusivearg)) return -1; Py_INCREF(index); self->index = index; if (inclusivearg == Py_True) inclusive = 1; Py_ssize_t linit = PyList_GET_SIZE(initrevsarg); initrevs = (long*)calloc(linit, sizeof(long)); if (initrevs == NULL) { PyErr_NoMemory(); goto bail; } for (i=0; i<linit; i++) { initrevs[i] = PyInt_AsLong(PyList_GET_ITEM(initrevsarg, i)); } if (PyErr_Occurred()) goto bail; self->iter = rustlazyancestors_init(index, index_get_parents, linit, initrevs, stoprev, inclusive); if (self->iter == NULL) { /* if this is because of GraphError::ParentOutOfRange * index_get_parents() has already set the proper ValueError */ goto bail; } free(initrevs); return 0; bail: free(initrevs); return -1; }; static void rustla_dealloc(rustlazyancestorsObject *self) { Py_XDECREF(self->index); if (self->iter != NULL) { /* can happen if rustla_init failed */ rustlazyancestors_drop(self->iter); } PyObject_Del(self); } static PyObject *rustla_next(rustlazyancestorsObject *self) { int res = rustlazyancestors_next(self->iter); if (res == -1) { /* Setting an explicit exception seems unnecessary * as examples from Python source code (Objects/rangeobjets.c and * Modules/_io/stringio.c) seem to demonstrate. */ return NULL; } return PyInt_FromLong(res); } static int rustla_contains(rustlazyancestorsObject *self, PyObject *rev) { if (!(PyInt_Check(rev))) { return 0; } return rustlazyancestors_contains(self->iter, PyInt_AS_LONG(rev)); } static PySequenceMethods rustla_sequence_methods = { 0, /* sq_length */ 0, /* sq_concat */ 0, /* sq_repeat */ 0, /* sq_item */ 0, /* sq_slice */ 0, /* sq_ass_item */ 0, /* sq_ass_slice */ (objobjproc)rustla_contains, /* sq_contains */ }; static PyTypeObject rustlazyancestorsType = { PyVarObject_HEAD_INIT(NULL, 0) /* header */ "parsers.rustlazyancestors", /* tp_name */ sizeof(rustlazyancestorsObject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)rustla_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ 0, /* tp_repr */ 0, /* tp_as_number */ &rustla_sequence_methods, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ "Iterator over ancestors, implemented in Rust", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ (iternextfunc)rustla_next, /* tp_iternext */ 0, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)rustla_init, /* tp_init */ 0, /* tp_alloc */ }; #endif /* WITH_RUST */ void revlog_module_init(PyObject *mod) { indexType.tp_new = PyType_GenericNew; if (PyType_Ready(&indexType) < 0) return; Py_INCREF(&indexType); PyModule_AddObject(mod, "index", (PyObject *)&indexType); nodetreeType.tp_new = PyType_GenericNew; if (PyType_Ready(&nodetreeType) < 0) return; Py_INCREF(&nodetreeType); PyModule_AddObject(mod, "nodetree", (PyObject *)&nodetreeType); if (!nullentry) { nullentry = Py_BuildValue(PY23("iiiiiiis#", "iiiiiiiy#"), 0, 0, 0, -1, -1, -1, -1, nullid, 20); } if (nullentry) PyObject_GC_UnTrack(nullentry); #ifdef WITH_RUST rustlazyancestorsType.tp_new = PyType_GenericNew; if (PyType_Ready(&rustlazyancestorsType) < 0) return; Py_INCREF(&rustlazyancestorsType); PyModule_AddObject(mod, "rustlazyancestors", (PyObject *)&rustlazyancestorsType); #endif }