view mercurial/simplemerge.py @ 42285:65b3ef162b39

automation: initial support for running Linux tests Building on top of our Windows automation support, this commit implements support for performing automated tasks on remote Linux machines. Specifically, we implement support for running tests on ephemeral EC2 instances. This seems to be a worthwhile place to start, as building packages on Linux is more or less a solved problem because we already have facilities for building in Docker containers, which provide "good enough" reproducibility guarantees. The new `run-tests-linux` command works similarly to `run-tests-windows`: it ensures an AMI with hg dependencies is available, provisions a temporary EC2 instance with this AMI, pushes local changes to that instance via SSH, then invokes `run-tests.py`. Using this new command, I am able to run the entire test harness substantially faster then I am on my local machine courtesy of access to massive core EC2 instances: wall: 16:20 ./run-tests.py -l (i7-6700K) wall: 14:00 automation.py run-tests-linux --ec2-instance c5.2xlarge wall: 8:30 automation.py run-tests-linux --ec2-instance m5.4xlarge wall: 8:04 automation.py run-tests-linux --ec2-instance c5.4xlarge wall: 4:30 automation.py run-tests-linux --ec2-instance c5.9xlarge wall: 3:57 automation.py run-tests-linux --ec2-instance m5.12xlarge wall: 3:05 automation.py run-tests-linux --ec2-instance m5.24xlarge wall: 3:02 automation.py run-tests-linux --ec2-instance c5.18xlarge ~3 minute wall time to run pretty much the entire test harness is not too bad! The AMIs install multiple versions of Python. And the run-tests-linux command specifies which one to use: automation.py run-tests-linux --python system3 automation.py run-tests-linux --python 3.5 automation.py run-tests-linux --python pypy2.7 By default, the system Python 2.7 is used. Using this functionality, I was able to identity some unexpected test failures on PyPy! Included in the feature is support for running with alternate filesystems. You can simply pass --filesystem to the command to specify the type of filesystem to run tests on. When the ephemeral instance is started, a new filesystem will be created and tests will run from it: wall: 4:30 automation.py run-tests-linux --ec2-instance c5.9xlarge wall: 4:20 automation.py run-tests-linux --ec2-instance c5d.9xlarge --filesystem xfs wall: 4:24 automation.py run-tests-linux --ec2-instance c5d.9xlarge --filesystem tmpfs wall: 4:26 automation.py run-tests-linux --ec2-instance c5d.9xlarge --filesystem ext4 We also support multiple Linux distributions: $ automation.py run-tests-linux --distro debian9 total time: 298.1s; setup: 60.7s; tests: 237.5s; setup overhead: 20.4% $ automation.py run-tests-linux --distro ubuntu18.04 total time: 286.1s; setup: 61.3s; tests: 224.7s; setup overhead: 21.4% $ automation.py run-tests-linux --distro ubuntu18.10 total time: 278.5s; setup: 58.2s; tests: 220.3s; setup overhead: 20.9% $ automation.py run-tests-linux --distro ubuntu19.04 total time: 265.8s; setup: 42.5s; tests: 223.3s; setup overhead: 16.0% Debian and Ubuntu are supported because those are what I use and am most familiar with. It should be easy enough to add support for other distros. Unlike the Windows AMIs, Linux EC2 instances bill per second. So the cost to instantiating an ephemeral instance isn't as severe. That being said, there is some overhead, as it takes several dozen seconds for the instance to boot, push local changes, and build Mercurial. During this time, the instance is largely CPU idle and wasting money. Even with this inefficiency, running tests is relatively cheap: $0.15-$0.25 per full test run. A machine running tests as efficiently as these EC2 instances would cost say $6,000, so you can run the test harness a >20,000 times for the cost of an equivalent machine. Running tests in EC2 is almost certainly cheaper than buying a beefy machine for developers to use :) # no-check-commit because foo_bar function names Differential Revision: https://phab.mercurial-scm.org/D6319
author Gregory Szorc <gregory.szorc@gmail.com>
date Sat, 27 Apr 2019 11:48:26 -0700
parents aaad36b88298
children 2372284d9457
line wrap: on
line source

# Copyright (C) 2004, 2005 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.

# mbp: "you know that thing where cvs gives you conflict markers?"
# s: "i hate that."

from __future__ import absolute_import

from .i18n import _
from . import (
    error,
    mdiff,
    pycompat,
)
from .utils import (
    stringutil,
)

class CantReprocessAndShowBase(Exception):
    pass

def intersect(ra, rb):
    """Given two ranges return the range where they intersect or None.

    >>> intersect((0, 10), (0, 6))
    (0, 6)
    >>> intersect((0, 10), (5, 15))
    (5, 10)
    >>> intersect((0, 10), (10, 15))
    >>> intersect((0, 9), (10, 15))
    >>> intersect((0, 9), (7, 15))
    (7, 9)
    """
    assert ra[0] <= ra[1]
    assert rb[0] <= rb[1]

    sa = max(ra[0], rb[0])
    sb = min(ra[1], rb[1])
    if sa < sb:
        return sa, sb
    else:
        return None

def compare_range(a, astart, aend, b, bstart, bend):
    """Compare a[astart:aend] == b[bstart:bend], without slicing.
    """
    if (aend - astart) != (bend - bstart):
        return False
    for ia, ib in zip(pycompat.xrange(astart, aend),
                      pycompat.xrange(bstart, bend)):
        if a[ia] != b[ib]:
            return False
    else:
        return True

class Merge3Text(object):
    """3-way merge of texts.

    Given strings BASE, OTHER, THIS, tries to produce a combined text
    incorporating the changes from both BASE->OTHER and BASE->THIS."""
    def __init__(self, basetext, atext, btext, base=None, a=None, b=None):
        self.basetext = basetext
        self.atext = atext
        self.btext = btext
        if base is None:
            base = mdiff.splitnewlines(basetext)
        if a is None:
            a = mdiff.splitnewlines(atext)
        if b is None:
            b = mdiff.splitnewlines(btext)
        self.base = base
        self.a = a
        self.b = b

    def merge_lines(self,
                    name_a=None,
                    name_b=None,
                    name_base=None,
                    start_marker='<<<<<<<',
                    mid_marker='=======',
                    end_marker='>>>>>>>',
                    base_marker=None,
                    localorother=None,
                    minimize=False):
        """Return merge in cvs-like form.
        """
        self.conflicts = False
        newline = '\n'
        if len(self.a) > 0:
            if self.a[0].endswith('\r\n'):
                newline = '\r\n'
            elif self.a[0].endswith('\r'):
                newline = '\r'
        if name_a and start_marker:
            start_marker = start_marker + ' ' + name_a
        if name_b and end_marker:
            end_marker = end_marker + ' ' + name_b
        if name_base and base_marker:
            base_marker = base_marker + ' ' + name_base
        merge_regions = self.merge_regions()
        if minimize:
            merge_regions = self.minimize(merge_regions)
        for t in merge_regions:
            what = t[0]
            if what == 'unchanged':
                for i in range(t[1], t[2]):
                    yield self.base[i]
            elif what == 'a' or what == 'same':
                for i in range(t[1], t[2]):
                    yield self.a[i]
            elif what == 'b':
                for i in range(t[1], t[2]):
                    yield self.b[i]
            elif what == 'conflict':
                if localorother == 'local':
                    for i in range(t[3], t[4]):
                        yield self.a[i]
                elif localorother == 'other':
                    for i in range(t[5], t[6]):
                        yield self.b[i]
                else:
                    self.conflicts = True
                    if start_marker is not None:
                        yield start_marker + newline
                    for i in range(t[3], t[4]):
                        yield self.a[i]
                    if base_marker is not None:
                        yield base_marker + newline
                        for i in range(t[1], t[2]):
                            yield self.base[i]
                    if mid_marker is not None:
                        yield mid_marker + newline
                    for i in range(t[5], t[6]):
                        yield self.b[i]
                    if end_marker is not None:
                        yield end_marker + newline
            else:
                raise ValueError(what)

    def merge_groups(self):
        """Yield sequence of line groups.  Each one is a tuple:

        'unchanged', lines
             Lines unchanged from base

        'a', lines
             Lines taken from a

        'same', lines
             Lines taken from a (and equal to b)

        'b', lines
             Lines taken from b

        'conflict', base_lines, a_lines, b_lines
             Lines from base were changed to either a or b and conflict.
        """
        for t in self.merge_regions():
            what = t[0]
            if what == 'unchanged':
                yield what, self.base[t[1]:t[2]]
            elif what == 'a' or what == 'same':
                yield what, self.a[t[1]:t[2]]
            elif what == 'b':
                yield what, self.b[t[1]:t[2]]
            elif what == 'conflict':
                yield (what,
                       self.base[t[1]:t[2]],
                       self.a[t[3]:t[4]],
                       self.b[t[5]:t[6]])
            else:
                raise ValueError(what)

    def merge_regions(self):
        """Return sequences of matching and conflicting regions.

        This returns tuples, where the first value says what kind we
        have:

        'unchanged', start, end
             Take a region of base[start:end]

        'same', astart, aend
             b and a are different from base but give the same result

        'a', start, end
             Non-clashing insertion from a[start:end]

        'conflict', zstart, zend, astart, aend, bstart, bend
            Conflict between a and b, with z as common ancestor

        Method is as follows:

        The two sequences align only on regions which match the base
        and both descendants.  These are found by doing a two-way diff
        of each one against the base, and then finding the
        intersections between those regions.  These "sync regions"
        are by definition unchanged in both and easily dealt with.

        The regions in between can be in any of three cases:
        conflicted, or changed on only one side.
        """

        # section a[0:ia] has been disposed of, etc
        iz = ia = ib = 0

        for region in self.find_sync_regions():
            zmatch, zend, amatch, aend, bmatch, bend = region
            #print 'match base [%d:%d]' % (zmatch, zend)

            matchlen = zend - zmatch
            assert matchlen >= 0
            assert matchlen == (aend - amatch)
            assert matchlen == (bend - bmatch)

            len_a = amatch - ia
            len_b = bmatch - ib
            len_base = zmatch - iz
            assert len_a >= 0
            assert len_b >= 0
            assert len_base >= 0

            #print 'unmatched a=%d, b=%d' % (len_a, len_b)

            if len_a or len_b:
                # try to avoid actually slicing the lists
                equal_a = compare_range(self.a, ia, amatch,
                                        self.base, iz, zmatch)
                equal_b = compare_range(self.b, ib, bmatch,
                                        self.base, iz, zmatch)
                same = compare_range(self.a, ia, amatch,
                                     self.b, ib, bmatch)

                if same:
                    yield 'same', ia, amatch
                elif equal_a and not equal_b:
                    yield 'b', ib, bmatch
                elif equal_b and not equal_a:
                    yield 'a', ia, amatch
                elif not equal_a and not equal_b:
                    yield 'conflict', iz, zmatch, ia, amatch, ib, bmatch
                else:
                    raise AssertionError("can't handle a=b=base but unmatched")

                ia = amatch
                ib = bmatch
            iz = zmatch

            # if the same part of the base was deleted on both sides
            # that's OK, we can just skip it.


            if matchlen > 0:
                assert ia == amatch
                assert ib == bmatch
                assert iz == zmatch

                yield 'unchanged', zmatch, zend
                iz = zend
                ia = aend
                ib = bend

    def minimize(self, merge_regions):
        """Trim conflict regions of lines where A and B sides match.

        Lines where both A and B have made the same changes at the beginning
        or the end of each merge region are eliminated from the conflict
        region and are instead considered the same.
        """
        for region in merge_regions:
            if region[0] != "conflict":
                yield region
                continue
            issue, z1, z2, a1, a2, b1, b2 = region
            alen = a2 - a1
            blen = b2 - b1

            # find matches at the front
            ii = 0
            while (ii < alen and ii < blen and
                   self.a[a1 + ii] == self.b[b1 + ii]):
                ii += 1
            startmatches = ii

            # find matches at the end
            ii = 0
            while (ii < alen and ii < blen and
                   self.a[a2 - ii - 1] == self.b[b2 - ii - 1]):
                ii += 1
            endmatches = ii

            if startmatches > 0:
                yield 'same', a1, a1 + startmatches

            yield ('conflict', z1, z2,
                    a1 + startmatches, a2 - endmatches,
                    b1 + startmatches, b2 - endmatches)

            if endmatches > 0:
                yield 'same', a2 - endmatches, a2

    def find_sync_regions(self):
        """Return a list of sync regions, where both descendants match the base.

        Generates a list of (base1, base2, a1, a2, b1, b2).  There is
        always a zero-length sync region at the end of all the files.
        """

        ia = ib = 0
        amatches = mdiff.get_matching_blocks(self.basetext, self.atext)
        bmatches = mdiff.get_matching_blocks(self.basetext, self.btext)
        len_a = len(amatches)
        len_b = len(bmatches)

        sl = []

        while ia < len_a and ib < len_b:
            abase, amatch, alen = amatches[ia]
            bbase, bmatch, blen = bmatches[ib]

            # there is an unconflicted block at i; how long does it
            # extend?  until whichever one ends earlier.
            i = intersect((abase, abase + alen), (bbase, bbase + blen))
            if i:
                intbase = i[0]
                intend = i[1]
                intlen = intend - intbase

                # found a match of base[i[0], i[1]]; this may be less than
                # the region that matches in either one
                assert intlen <= alen
                assert intlen <= blen
                assert abase <= intbase
                assert bbase <= intbase

                asub = amatch + (intbase - abase)
                bsub = bmatch + (intbase - bbase)
                aend = asub + intlen
                bend = bsub + intlen

                assert self.base[intbase:intend] == self.a[asub:aend], (
                        (self.base[intbase:intend], self.a[asub:aend]))

                assert self.base[intbase:intend] == self.b[bsub:bend]

                sl.append((intbase, intend,
                           asub, aend,
                           bsub, bend))

            # advance whichever one ends first in the base text
            if (abase + alen) < (bbase + blen):
                ia += 1
            else:
                ib += 1

        intbase = len(self.base)
        abase = len(self.a)
        bbase = len(self.b)
        sl.append((intbase, intbase, abase, abase, bbase, bbase))

        return sl

    def find_unconflicted(self):
        """Return a list of ranges in base that are not conflicted."""
        am = mdiff.get_matching_blocks(self.basetext, self.atext)
        bm = mdiff.get_matching_blocks(self.basetext, self.btext)

        unc = []

        while am and bm:
            # there is an unconflicted block at i; how long does it
            # extend?  until whichever one ends earlier.
            a1 = am[0][0]
            a2 = a1 + am[0][2]
            b1 = bm[0][0]
            b2 = b1 + bm[0][2]
            i = intersect((a1, a2), (b1, b2))
            if i:
                unc.append(i)

            if a2 < b2:
                del am[0]
            else:
                del bm[0]

        return unc

def _verifytext(text, path, ui, opts):
    """verifies that text is non-binary (unless opts[text] is passed,
    then we just warn)"""
    if stringutil.binary(text):
        msg = _("%s looks like a binary file.") % path
        if not opts.get('quiet'):
            ui.warn(_('warning: %s\n') % msg)
        if not opts.get('text'):
            raise error.Abort(msg)
    return text

def _picklabels(defaults, overrides):
    if len(overrides) > 3:
        raise error.Abort(_("can only specify three labels."))
    result = defaults[:]
    for i, override in enumerate(overrides):
        result[i] = override
    return result

def simplemerge(ui, localctx, basectx, otherctx, **opts):
    """Performs the simplemerge algorithm.

    The merged result is written into `localctx`.
    """
    opts = pycompat.byteskwargs(opts)

    def readctx(ctx):
        # Merges were always run in the working copy before, which means
        # they used decoded data, if the user defined any repository
        # filters.
        #
        # Maintain that behavior today for BC, though perhaps in the future
        # it'd be worth considering whether merging encoded data (what the
        # repository usually sees) might be more useful.
        return _verifytext(ctx.decodeddata(), ctx.path(), ui, opts)

    mode = opts.get('mode','merge')
    name_a, name_b, name_base = None, None, None
    if mode != 'union':
        name_a, name_b, name_base = _picklabels([localctx.path(),
                                                 otherctx.path(), None],
                                                opts.get('label', []))

    try:
        localtext = readctx(localctx)
        basetext = readctx(basectx)
        othertext = readctx(otherctx)
    except error.Abort:
        return 1

    m3 = Merge3Text(basetext, localtext, othertext)
    extrakwargs = {
            "localorother": opts.get("localorother", None),
            'minimize': True,
        }
    if mode == 'union':
        extrakwargs['start_marker'] = None
        extrakwargs['mid_marker'] = None
        extrakwargs['end_marker'] = None
    elif name_base is not None:
        extrakwargs['base_marker'] = '|||||||'
        extrakwargs['name_base'] = name_base
        extrakwargs['minimize'] = False

    mergedtext = ""
    for line in m3.merge_lines(name_a=name_a, name_b=name_b,
                               **pycompat.strkwargs(extrakwargs)):
        if opts.get('print'):
            ui.fout.write(line)
        else:
            mergedtext += line

    if not opts.get('print'):
        localctx.write(mergedtext, localctx.flags())

    if m3.conflicts and not mode == 'union':
        return 1