Mercurial > hg
view mercurial/hbisect.py @ 31793:69d8fcf20014
help: document bundle specifications
I softly formalized the concept of a "bundle specification" a while
ago when I was working on clone bundles and stream clone bundles and
wanted a more robust way to define what exactly is in a bundle file.
The concept has existed for a while. Since it is part of the clone
bundles feature and exposed to the user via the "-t" argument to
`hg bundle`, it is something we need to support for the long haul.
After the 4.1 release, I heard a few people comment that they didn't
realize you could generate zstd bundles with `hg bundle`. I'm
partially to blame for not documenting it in bundle's docstring.
Additionally, I added a hacky, experimental feature for controlling
the compression level of bundles in 76104a4899ad. As the commit
message says, I went with a quick and dirty solution out of time
constraints. Furthermore, I wanted to eventually store this
configuration in the "bundlespec" so it could be made more flexible.
Given:
a) bundlespecs are here to stay
b) we don't have great documentation over what they are, despite being
a user-facing feature
c) the list of available compression engines and their behavior isn't
exposed
d) we need an extensible place to modify behavior of compression
engines
I want to move forward with formalizing bundlespecs as a user-facing
feature. This commit does that by introducing a "bundlespec" help
page. Leaning on the just-added compression engine documentation
and API, the topic also conveniently lists available compression
engines and details about them. This makes features like zstd
bundle compression more discoverable. e.g. you can now
`hg help -k zstd` and it lists the "bundlespec" topic.
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Sat, 01 Apr 2017 13:42:06 -0700 |
parents | e124e83fd159 |
children | fd8b6b183073 |
line wrap: on
line source
# changelog bisection for mercurial # # Copyright 2007 Matt Mackall # Copyright 2005, 2006 Benoit Boissinot <benoit.boissinot@ens-lyon.org> # # Inspired by git bisect, extension skeleton taken from mq.py. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import collections from .i18n import _ from .node import ( hex, short, ) from . import ( error, ) def bisect(changelog, state): """find the next node (if any) for testing during a bisect search. returns a (nodes, number, good) tuple. 'nodes' is the final result of the bisect if 'number' is 0. Otherwise 'number' indicates the remaining possible candidates for the search and 'nodes' contains the next bisect target. 'good' is True if bisect is searching for a first good changeset, False if searching for a first bad one. """ clparents = changelog.parentrevs skip = set([changelog.rev(n) for n in state['skip']]) def buildancestors(bad, good): # only the earliest bad revision matters badrev = min([changelog.rev(n) for n in bad]) goodrevs = [changelog.rev(n) for n in good] goodrev = min(goodrevs) # build visit array ancestors = [None] * (len(changelog) + 1) # an extra for [-1] # set nodes descended from goodrevs for rev in goodrevs: ancestors[rev] = [] for rev in changelog.revs(goodrev + 1): for prev in clparents(rev): if ancestors[prev] == []: ancestors[rev] = [] # clear good revs from array for rev in goodrevs: ancestors[rev] = None for rev in changelog.revs(len(changelog), goodrev): if ancestors[rev] is None: for prev in clparents(rev): ancestors[prev] = None if ancestors[badrev] is None: return badrev, None return badrev, ancestors good = False badrev, ancestors = buildancestors(state['bad'], state['good']) if not ancestors: # looking for bad to good transition? good = True badrev, ancestors = buildancestors(state['good'], state['bad']) bad = changelog.node(badrev) if not ancestors: # now we're confused if (len(state['bad']) == 1 and len(state['good']) == 1 and state['bad'] != state['good']): raise error.Abort(_("starting revisions are not directly related")) raise error.Abort(_("inconsistent state, %s:%s is good and bad") % (badrev, short(bad))) # build children dict children = {} visit = collections.deque([badrev]) candidates = [] while visit: rev = visit.popleft() if ancestors[rev] == []: candidates.append(rev) for prev in clparents(rev): if prev != -1: if prev in children: children[prev].append(rev) else: children[prev] = [rev] visit.append(prev) candidates.sort() # have we narrowed it down to one entry? # or have all other possible candidates besides 'bad' have been skipped? tot = len(candidates) unskipped = [c for c in candidates if (c not in skip) and (c != badrev)] if tot == 1 or not unskipped: return ([changelog.node(c) for c in candidates], 0, good) perfect = tot // 2 # find the best node to test best_rev = None best_len = -1 poison = set() for rev in candidates: if rev in poison: # poison children poison.update(children.get(rev, [])) continue a = ancestors[rev] or [rev] ancestors[rev] = None x = len(a) # number of ancestors y = tot - x # number of non-ancestors value = min(x, y) # how good is this test? if value > best_len and rev not in skip: best_len = value best_rev = rev if value == perfect: # found a perfect candidate? quit early break if y < perfect and rev not in skip: # all downhill from here? # poison children poison.update(children.get(rev, [])) continue for c in children.get(rev, []): if ancestors[c]: ancestors[c] = list(set(ancestors[c] + a)) else: ancestors[c] = a + [c] assert best_rev is not None best_node = changelog.node(best_rev) return ([best_node], tot, good) def extendrange(repo, state, nodes, good): # bisect is incomplete when it ends on a merge node and # one of the parent was not checked. parents = repo[nodes[0]].parents() if len(parents) > 1: if good: side = state['bad'] else: side = state['good'] num = len(set(i.node() for i in parents) & set(side)) if num == 1: return parents[0].ancestor(parents[1]) return None def load_state(repo): state = {'current': [], 'good': [], 'bad': [], 'skip': []} for l in repo.vfs.tryreadlines("bisect.state"): kind, node = l[:-1].split() node = repo.lookup(node) if kind not in state: raise error.Abort(_("unknown bisect kind %s") % kind) state[kind].append(node) return state def save_state(repo, state): f = repo.vfs("bisect.state", "w", atomictemp=True) with repo.wlock(): for kind in sorted(state): for node in state[kind]: f.write("%s %s\n" % (kind, hex(node))) f.close() def resetstate(repo): """remove any bisect state from the repository""" if repo.vfs.exists("bisect.state"): repo.vfs.unlink("bisect.state") def checkstate(state): """check we have both 'good' and 'bad' to define a range Raise Abort exception otherwise.""" if state['good'] and state['bad']: return True if not state['good']: raise error.Abort(_('cannot bisect (no known good revisions)')) else: raise error.Abort(_('cannot bisect (no known bad revisions)')) def get(repo, status): """ Return a list of revision(s) that match the given status: - ``good``, ``bad``, ``skip``: csets explicitly marked as good/bad/skip - ``goods``, ``bads`` : csets topologically good/bad - ``range`` : csets taking part in the bisection - ``pruned`` : csets that are goods, bads or skipped - ``untested`` : csets whose fate is yet unknown - ``ignored`` : csets ignored due to DAG topology - ``current`` : the cset currently being bisected """ state = load_state(repo) if status in ('good', 'bad', 'skip', 'current'): return map(repo.changelog.rev, state[status]) else: # In the following sets, we do *not* call 'bisect()' with more # than one level of recursion, because that can be very, very # time consuming. Instead, we always develop the expression as # much as possible. # 'range' is all csets that make the bisection: # - have a good ancestor and a bad descendant, or conversely # that's because the bisection can go either way range = '( bisect(bad)::bisect(good) | bisect(good)::bisect(bad) )' _t = repo.revs('bisect(good)::bisect(bad)') # The sets of topologically good or bad csets if len(_t) == 0: # Goods are topologically after bads goods = 'bisect(good)::' # Pruned good csets bads = '::bisect(bad)' # Pruned bad csets else: # Goods are topologically before bads goods = '::bisect(good)' # Pruned good csets bads = 'bisect(bad)::' # Pruned bad csets # 'pruned' is all csets whose fate is already known: good, bad, skip skips = 'bisect(skip)' # Pruned skipped csets pruned = '( (%s) | (%s) | (%s) )' % (goods, bads, skips) # 'untested' is all cset that are- in 'range', but not in 'pruned' untested = '( (%s) - (%s) )' % (range, pruned) # 'ignored' is all csets that were not used during the bisection # due to DAG topology, but may however have had an impact. # E.g., a branch merged between bads and goods, but whose branch- # point is out-side of the range. iba = '::bisect(bad) - ::bisect(good)' # Ignored bads' ancestors iga = '::bisect(good) - ::bisect(bad)' # Ignored goods' ancestors ignored = '( ( (%s) | (%s) ) - (%s) )' % (iba, iga, range) if status == 'range': return repo.revs(range) elif status == 'pruned': return repo.revs(pruned) elif status == 'untested': return repo.revs(untested) elif status == 'ignored': return repo.revs(ignored) elif status == "goods": return repo.revs(goods) elif status == "bads": return repo.revs(bads) else: raise error.ParseError(_('invalid bisect state')) def label(repo, node): rev = repo.changelog.rev(node) # Try explicit sets if rev in get(repo, 'good'): # i18n: bisect changeset status return _('good') if rev in get(repo, 'bad'): # i18n: bisect changeset status return _('bad') if rev in get(repo, 'skip'): # i18n: bisect changeset status return _('skipped') if rev in get(repo, 'untested') or rev in get(repo, 'current'): # i18n: bisect changeset status return _('untested') if rev in get(repo, 'ignored'): # i18n: bisect changeset status return _('ignored') # Try implicit sets if rev in get(repo, 'goods'): # i18n: bisect changeset status return _('good (implicit)') if rev in get(repo, 'bads'): # i18n: bisect changeset status return _('bad (implicit)') return None def shortlabel(label): if label: return label[0].upper() return None def printresult(ui, repo, state, displayer, nodes, good): if len(nodes) == 1: # narrowed it down to a single revision if good: ui.write(_("The first good revision is:\n")) else: ui.write(_("The first bad revision is:\n")) displayer.show(repo[nodes[0]]) extendnode = extendrange(repo, state, nodes, good) if extendnode is not None: ui.write(_('Not all ancestors of this changeset have been' ' checked.\nUse bisect --extend to continue the ' 'bisection from\nthe common ancestor, %s.\n') % extendnode) else: # multiple possible revisions if good: ui.write(_("Due to skipped revisions, the first " "good revision could be any of:\n")) else: ui.write(_("Due to skipped revisions, the first " "bad revision could be any of:\n")) for n in nodes: displayer.show(repo[n]) displayer.close()