view mercurial/pathutil.py @ 31793:69d8fcf20014

help: document bundle specifications I softly formalized the concept of a "bundle specification" a while ago when I was working on clone bundles and stream clone bundles and wanted a more robust way to define what exactly is in a bundle file. The concept has existed for a while. Since it is part of the clone bundles feature and exposed to the user via the "-t" argument to `hg bundle`, it is something we need to support for the long haul. After the 4.1 release, I heard a few people comment that they didn't realize you could generate zstd bundles with `hg bundle`. I'm partially to blame for not documenting it in bundle's docstring. Additionally, I added a hacky, experimental feature for controlling the compression level of bundles in 76104a4899ad. As the commit message says, I went with a quick and dirty solution out of time constraints. Furthermore, I wanted to eventually store this configuration in the "bundlespec" so it could be made more flexible. Given: a) bundlespecs are here to stay b) we don't have great documentation over what they are, despite being a user-facing feature c) the list of available compression engines and their behavior isn't exposed d) we need an extensible place to modify behavior of compression engines I want to move forward with formalizing bundlespecs as a user-facing feature. This commit does that by introducing a "bundlespec" help page. Leaning on the just-added compression engine documentation and API, the topic also conveniently lists available compression engines and details about them. This makes features like zstd bundle compression more discoverable. e.g. you can now `hg help -k zstd` and it lists the "bundlespec" topic.
author Gregory Szorc <gregory.szorc@gmail.com>
date Sat, 01 Apr 2017 13:42:06 -0700
parents cfe66dcf45c0
children 456626e9c3d1 20bac46f7744
line wrap: on
line source

from __future__ import absolute_import

import errno
import os
import posixpath
import stat

from .i18n import _
from . import (
    encoding,
    error,
    pycompat,
    util,
)

def _lowerclean(s):
    return encoding.hfsignoreclean(s.lower())

class pathauditor(object):
    '''ensure that a filesystem path contains no banned components.
    the following properties of a path are checked:

    - ends with a directory separator
    - under top-level .hg
    - starts at the root of a windows drive
    - contains ".."

    More check are also done about the file system states:
    - traverses a symlink (e.g. a/symlink_here/b)
    - inside a nested repository (a callback can be used to approve
      some nested repositories, e.g., subrepositories)

    The file system checks are only done when 'realfs' is set to True (the
    default). They should be disable then we are auditing path for operation on
    stored history.
    '''

    def __init__(self, root, callback=None, realfs=True):
        self.audited = set()
        self.auditeddir = set()
        self.root = root
        self._realfs = realfs
        self.callback = callback
        if os.path.lexists(root) and not util.fscasesensitive(root):
            self.normcase = util.normcase
        else:
            self.normcase = lambda x: x

    def __call__(self, path):
        '''Check the relative path.
        path may contain a pattern (e.g. foodir/**.txt)'''

        path = util.localpath(path)
        normpath = self.normcase(path)
        if normpath in self.audited:
            return
        # AIX ignores "/" at end of path, others raise EISDIR.
        if util.endswithsep(path):
            raise error.Abort(_("path ends in directory separator: %s") % path)
        parts = util.splitpath(path)
        if (os.path.splitdrive(path)[0]
            or _lowerclean(parts[0]) in ('.hg', '.hg.', '')
            or os.pardir in parts):
            raise error.Abort(_("path contains illegal component: %s") % path)
        # Windows shortname aliases
        for p in parts:
            if "~" in p:
                first, last = p.split("~", 1)
                if last.isdigit() and first.upper() in ["HG", "HG8B6C"]:
                    raise error.Abort(_("path contains illegal component: %s")
                                     % path)
        if '.hg' in _lowerclean(path):
            lparts = [_lowerclean(p.lower()) for p in parts]
            for p in '.hg', '.hg.':
                if p in lparts[1:]:
                    pos = lparts.index(p)
                    base = os.path.join(*parts[:pos])
                    raise error.Abort(_("path '%s' is inside nested repo %r")
                                     % (path, base))

        normparts = util.splitpath(normpath)
        assert len(parts) == len(normparts)

        parts.pop()
        normparts.pop()
        prefixes = []
        # It's important that we check the path parts starting from the root.
        # This means we won't accidentally traverse a symlink into some other
        # filesystem (which is potentially expensive to access).
        for i in range(len(parts)):
            prefix = pycompat.ossep.join(parts[:i + 1])
            normprefix = pycompat.ossep.join(normparts[:i + 1])
            if normprefix in self.auditeddir:
                continue
            if self._realfs:
                self._checkfs(prefix, path)
            prefixes.append(normprefix)

        self.audited.add(normpath)
        # only add prefixes to the cache after checking everything: we don't
        # want to add "foo/bar/baz" before checking if there's a "foo/.hg"
        self.auditeddir.update(prefixes)

    def _checkfs(self, prefix, path):
        """raise exception if a file system backed check fails"""
        curpath = os.path.join(self.root, prefix)
        try:
            st = os.lstat(curpath)
        except OSError as err:
            # EINVAL can be raised as invalid path syntax under win32.
            # They must be ignored for patterns can be checked too.
            if err.errno not in (errno.ENOENT, errno.ENOTDIR, errno.EINVAL):
                raise
        else:
            if stat.S_ISLNK(st.st_mode):
                msg = _('path %r traverses symbolic link %r') % (path, prefix)
                raise error.Abort(msg)
            elif (stat.S_ISDIR(st.st_mode) and
                  os.path.isdir(os.path.join(curpath, '.hg'))):
                if not self.callback or not self.callback(curpath):
                    msg = _("path '%s' is inside nested repo %r")
                    raise error.Abort(msg % (path, prefix))

    def check(self, path):
        try:
            self(path)
            return True
        except (OSError, error.Abort):
            return False

def canonpath(root, cwd, myname, auditor=None):
    '''return the canonical path of myname, given cwd and root'''
    if util.endswithsep(root):
        rootsep = root
    else:
        rootsep = root + pycompat.ossep
    name = myname
    if not os.path.isabs(name):
        name = os.path.join(root, cwd, name)
    name = os.path.normpath(name)
    if auditor is None:
        auditor = pathauditor(root)
    if name != rootsep and name.startswith(rootsep):
        name = name[len(rootsep):]
        auditor(name)
        return util.pconvert(name)
    elif name == root:
        return ''
    else:
        # Determine whether `name' is in the hierarchy at or beneath `root',
        # by iterating name=dirname(name) until that causes no change (can't
        # check name == '/', because that doesn't work on windows). The list
        # `rel' holds the reversed list of components making up the relative
        # file name we want.
        rel = []
        while True:
            try:
                s = util.samefile(name, root)
            except OSError:
                s = False
            if s:
                if not rel:
                    # name was actually the same as root (maybe a symlink)
                    return ''
                rel.reverse()
                name = os.path.join(*rel)
                auditor(name)
                return util.pconvert(name)
            dirname, basename = util.split(name)
            rel.append(basename)
            if dirname == name:
                break
            name = dirname

        # A common mistake is to use -R, but specify a file relative to the repo
        # instead of cwd.  Detect that case, and provide a hint to the user.
        hint = None
        try:
            if cwd != root:
                canonpath(root, root, myname, auditor)
                hint = (_("consider using '--cwd %s'")
                        % os.path.relpath(root, cwd))
        except error.Abort:
            pass

        raise error.Abort(_("%s not under root '%s'") % (myname, root),
                         hint=hint)

def normasprefix(path):
    '''normalize the specified path as path prefix

    Returned value can be used safely for "p.startswith(prefix)",
    "p[len(prefix):]", and so on.

    For efficiency, this expects "path" argument to be already
    normalized by "os.path.normpath", "os.path.realpath", and so on.

    See also issue3033 for detail about need of this function.

    >>> normasprefix('/foo/bar').replace(os.sep, '/')
    '/foo/bar/'
    >>> normasprefix('/').replace(os.sep, '/')
    '/'
    '''
    d, p = os.path.splitdrive(path)
    if len(p) != len(pycompat.ossep):
        return path + pycompat.ossep
    else:
        return path

# forward two methods from posixpath that do what we need, but we'd
# rather not let our internals know that we're thinking in posix terms
# - instead we'll let them be oblivious.
join = posixpath.join
dirname = posixpath.dirname