Mercurial > hg
view mercurial/profiling.py @ 31793:69d8fcf20014
help: document bundle specifications
I softly formalized the concept of a "bundle specification" a while
ago when I was working on clone bundles and stream clone bundles and
wanted a more robust way to define what exactly is in a bundle file.
The concept has existed for a while. Since it is part of the clone
bundles feature and exposed to the user via the "-t" argument to
`hg bundle`, it is something we need to support for the long haul.
After the 4.1 release, I heard a few people comment that they didn't
realize you could generate zstd bundles with `hg bundle`. I'm
partially to blame for not documenting it in bundle's docstring.
Additionally, I added a hacky, experimental feature for controlling
the compression level of bundles in 76104a4899ad. As the commit
message says, I went with a quick and dirty solution out of time
constraints. Furthermore, I wanted to eventually store this
configuration in the "bundlespec" so it could be made more flexible.
Given:
a) bundlespecs are here to stay
b) we don't have great documentation over what they are, despite being
a user-facing feature
c) the list of available compression engines and their behavior isn't
exposed
d) we need an extensible place to modify behavior of compression
engines
I want to move forward with formalizing bundlespecs as a user-facing
feature. This commit does that by introducing a "bundlespec" help
page. Leaning on the just-added compression engine documentation
and API, the topic also conveniently lists available compression
engines and details about them. This makes features like zstd
bundle compression more discoverable. e.g. you can now
`hg help -k zstd` and it lists the "bundlespec" topic.
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Sat, 01 Apr 2017 13:42:06 -0700 |
parents | 22fbca1d11ed |
children | f40dc6f7c12f |
line wrap: on
line source
# profiling.py - profiling functions # # Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import, print_function import contextlib from .i18n import _ from . import ( encoding, error, util, ) @contextlib.contextmanager def lsprofile(ui, fp): format = ui.config('profiling', 'format', default='text') field = ui.config('profiling', 'sort', default='inlinetime') limit = ui.configint('profiling', 'limit', default=30) climit = ui.configint('profiling', 'nested', default=0) if format not in ['text', 'kcachegrind']: ui.warn(_("unrecognized profiling format '%s'" " - Ignored\n") % format) format = 'text' try: from . import lsprof except ImportError: raise error.Abort(_( 'lsprof not available - install from ' 'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/')) p = lsprof.Profiler() p.enable(subcalls=True) try: yield finally: p.disable() if format == 'kcachegrind': from . import lsprofcalltree calltree = lsprofcalltree.KCacheGrind(p) calltree.output(fp) else: # format == 'text' stats = lsprof.Stats(p.getstats()) stats.sort(field) stats.pprint(limit=limit, file=fp, climit=climit) @contextlib.contextmanager def flameprofile(ui, fp): try: from flamegraph import flamegraph except ImportError: raise error.Abort(_( 'flamegraph not available - install from ' 'https://github.com/evanhempel/python-flamegraph')) # developer config: profiling.freq freq = ui.configint('profiling', 'freq', default=1000) filter_ = None collapse_recursion = True thread = flamegraph.ProfileThread(fp, 1.0 / freq, filter_, collapse_recursion) start_time = util.timer() try: thread.start() yield finally: thread.stop() thread.join() print('Collected %d stack frames (%d unique) in %2.2f seconds.' % ( util.timer() - start_time, thread.num_frames(), thread.num_frames(unique=True))) @contextlib.contextmanager def statprofile(ui, fp): from . import statprof freq = ui.configint('profiling', 'freq', default=1000) if freq > 0: # Cannot reset when profiler is already active. So silently no-op. if statprof.state.profile_level == 0: statprof.reset(freq) else: ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq) statprof.start(mechanism='thread') try: yield finally: data = statprof.stop() profformat = ui.config('profiling', 'statformat', 'hotpath') formats = { 'byline': statprof.DisplayFormats.ByLine, 'bymethod': statprof.DisplayFormats.ByMethod, 'hotpath': statprof.DisplayFormats.Hotpath, 'json': statprof.DisplayFormats.Json, 'chrome': statprof.DisplayFormats.Chrome, } if profformat in formats: displayformat = formats[profformat] else: ui.warn(_('unknown profiler output format: %s\n') % profformat) displayformat = statprof.DisplayFormats.Hotpath kwargs = {} def fraction(s): if s.endswith('%'): v = float(s[:-1]) / 100 else: v = float(s) if 0 <= v <= 1: return v raise ValueError(s) if profformat == 'chrome': showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005) showmax = ui.configwith(fraction, 'profiling', 'showmax', 0.999) kwargs.update(minthreshold=showmin, maxthreshold=showmax) statprof.display(fp, data=data, format=displayformat, **kwargs) @contextlib.contextmanager def profile(ui): """Start profiling. Profiling is active when the context manager is active. When the context manager exits, profiling results will be written to the configured output. """ profiler = encoding.environ.get('HGPROF') if profiler is None: profiler = ui.config('profiling', 'type', default='stat') if profiler not in ('ls', 'stat', 'flame'): ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler) profiler = 'stat' output = ui.config('profiling', 'output') if output == 'blackbox': fp = util.stringio() elif output: path = ui.expandpath(output) fp = open(path, 'wb') else: fp = ui.ferr try: if profiler == 'ls': proffn = lsprofile elif profiler == 'flame': proffn = flameprofile else: proffn = statprofile with proffn(ui, fp): yield finally: if output: if output == 'blackbox': val = 'Profile:\n%s' % fp.getvalue() # ui.log treats the input as a format string, # so we need to escape any % signs. val = val.replace('%', '%%') ui.log('profile', val) fp.close() @contextlib.contextmanager def maybeprofile(ui): """Profile if enabled, else do nothing. This context manager can be used to optionally profile if profiling is enabled. Otherwise, it does nothing. The purpose of this context manager is to make calling code simpler: just use a single code path for calling into code you may want to profile and this function determines whether to start profiling. """ if ui.configbool('profiling', 'enabled'): with profile(ui): yield else: yield