Mercurial > hg
view tests/test-batching.py @ 31793:69d8fcf20014
help: document bundle specifications
I softly formalized the concept of a "bundle specification" a while
ago when I was working on clone bundles and stream clone bundles and
wanted a more robust way to define what exactly is in a bundle file.
The concept has existed for a while. Since it is part of the clone
bundles feature and exposed to the user via the "-t" argument to
`hg bundle`, it is something we need to support for the long haul.
After the 4.1 release, I heard a few people comment that they didn't
realize you could generate zstd bundles with `hg bundle`. I'm
partially to blame for not documenting it in bundle's docstring.
Additionally, I added a hacky, experimental feature for controlling
the compression level of bundles in 76104a4899ad. As the commit
message says, I went with a quick and dirty solution out of time
constraints. Furthermore, I wanted to eventually store this
configuration in the "bundlespec" so it could be made more flexible.
Given:
a) bundlespecs are here to stay
b) we don't have great documentation over what they are, despite being
a user-facing feature
c) the list of available compression engines and their behavior isn't
exposed
d) we need an extensible place to modify behavior of compression
engines
I want to move forward with formalizing bundlespecs as a user-facing
feature. This commit does that by introducing a "bundlespec" help
page. Leaning on the just-added compression engine documentation
and API, the topic also conveniently lists available compression
engines and details about them. This makes features like zstd
bundle compression more discoverable. e.g. you can now
`hg help -k zstd` and it lists the "bundlespec" topic.
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Sat, 01 Apr 2017 13:42:06 -0700 |
parents | 544908ae36ce |
children | e2fc2122029c |
line wrap: on
line source
# test-batching.py - tests for transparent command batching # # Copyright 2011 Peter Arrenbrecht <peter@arrenbrecht.ch> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import, print_function from mercurial import ( peer, wireproto, ) # equivalent of repo.repository class thing(object): def hello(self): return "Ready." # equivalent of localrepo.localrepository class localthing(thing): def foo(self, one, two=None): if one: return "%s and %s" % (one, two,) return "Nope" def bar(self, b, a): return "%s und %s" % (b, a,) def greet(self, name=None): return "Hello, %s" % name def batch(self): '''Support for local batching.''' return peer.localbatch(self) # usage of "thing" interface def use(it): # Direct call to base method shared between client and server. print(it.hello()) # Direct calls to proxied methods. They cause individual roundtrips. print(it.foo("Un", two="Deux")) print(it.bar("Eins", "Zwei")) # Batched call to a couple of (possibly proxied) methods. batch = it.batch() # The calls return futures to eventually hold results. foo = batch.foo(one="One", two="Two") foo2 = batch.foo(None) bar = batch.bar("Eins", "Zwei") # We can call non-batchable proxy methods, but the break the current batch # request and cause additional roundtrips. greet = batch.greet(name="John Smith") # We can also add local methods into the mix, but they break the batch too. hello = batch.hello() bar2 = batch.bar(b="Uno", a="Due") # Only now are all the calls executed in sequence, with as few roundtrips # as possible. batch.submit() # After the call to submit, the futures actually contain values. print(foo.value) print(foo2.value) print(bar.value) print(greet.value) print(hello.value) print(bar2.value) # local usage mylocal = localthing() print() print("== Local") use(mylocal) # demo remoting; mimicks what wireproto and HTTP/SSH do # shared def escapearg(plain): return (plain .replace(':', '::') .replace(',', ':,') .replace(';', ':;') .replace('=', ':=')) def unescapearg(escaped): return (escaped .replace(':=', '=') .replace(':;', ';') .replace(':,', ',') .replace('::', ':')) # server side # equivalent of wireproto's global functions class server(object): def __init__(self, local): self.local = local def _call(self, name, args): args = dict(arg.split('=', 1) for arg in args) return getattr(self, name)(**args) def perform(self, req): print("REQ:", req) name, args = req.split('?', 1) args = args.split('&') vals = dict(arg.split('=', 1) for arg in args) res = getattr(self, name)(**vals) print(" ->", res) return res def batch(self, cmds): res = [] for pair in cmds.split(';'): name, args = pair.split(':', 1) vals = {} for a in args.split(','): if a: n, v = a.split('=') vals[n] = unescapearg(v) res.append(escapearg(getattr(self, name)(**vals))) return ';'.join(res) def foo(self, one, two): return mangle(self.local.foo(unmangle(one), unmangle(two))) def bar(self, b, a): return mangle(self.local.bar(unmangle(b), unmangle(a))) def greet(self, name): return mangle(self.local.greet(unmangle(name))) myserver = server(mylocal) # local side # equivalent of wireproto.encode/decodelist, that is, type-specific marshalling # here we just transform the strings a bit to check we're properly en-/decoding def mangle(s): return ''.join(chr(ord(c) + 1) for c in s) def unmangle(s): return ''.join(chr(ord(c) - 1) for c in s) # equivalent of wireproto.wirerepository and something like http's wire format class remotething(thing): def __init__(self, server): self.server = server def _submitone(self, name, args): req = name + '?' + '&'.join(['%s=%s' % (n, v) for n, v in args]) return self.server.perform(req) def _submitbatch(self, cmds): req = [] for name, args in cmds: args = ','.join(n + '=' + escapearg(v) for n, v in args) req.append(name + ':' + args) req = ';'.join(req) res = self._submitone('batch', [('cmds', req,)]) return res.split(';') def batch(self): return wireproto.remotebatch(self) @peer.batchable def foo(self, one, two=None): if not one: yield "Nope", None encargs = [('one', mangle(one),), ('two', mangle(two),)] encresref = peer.future() yield encargs, encresref yield unmangle(encresref.value) @peer.batchable def bar(self, b, a): encresref = peer.future() yield [('b', mangle(b),), ('a', mangle(a),)], encresref yield unmangle(encresref.value) # greet is coded directly. It therefore does not support batching. If it # does appear in a batch, the batch is split around greet, and the call to # greet is done in its own roundtrip. def greet(self, name=None): return unmangle(self._submitone('greet', [('name', mangle(name),)])) # demo remote usage myproxy = remotething(myserver) print() print("== Remote") use(myproxy)