view tests/test-revlog-raw.py @ 31793:69d8fcf20014

help: document bundle specifications I softly formalized the concept of a "bundle specification" a while ago when I was working on clone bundles and stream clone bundles and wanted a more robust way to define what exactly is in a bundle file. The concept has existed for a while. Since it is part of the clone bundles feature and exposed to the user via the "-t" argument to `hg bundle`, it is something we need to support for the long haul. After the 4.1 release, I heard a few people comment that they didn't realize you could generate zstd bundles with `hg bundle`. I'm partially to blame for not documenting it in bundle's docstring. Additionally, I added a hacky, experimental feature for controlling the compression level of bundles in 76104a4899ad. As the commit message says, I went with a quick and dirty solution out of time constraints. Furthermore, I wanted to eventually store this configuration in the "bundlespec" so it could be made more flexible. Given: a) bundlespecs are here to stay b) we don't have great documentation over what they are, despite being a user-facing feature c) the list of available compression engines and their behavior isn't exposed d) we need an extensible place to modify behavior of compression engines I want to move forward with formalizing bundlespecs as a user-facing feature. This commit does that by introducing a "bundlespec" help page. Leaning on the just-added compression engine documentation and API, the topic also conveniently lists available compression engines and details about them. This makes features like zstd bundle compression more discoverable. e.g. you can now `hg help -k zstd` and it lists the "bundlespec" topic.
author Gregory Szorc <gregory.szorc@gmail.com>
date Sat, 01 Apr 2017 13:42:06 -0700
parents 15707e58fc3d
children 6788e648efcf
line wrap: on
line source

# test revlog interaction about raw data (flagprocessor)

from __future__ import absolute_import, print_function

import sys

from mercurial import (
    encoding,
    node,
    revlog,
    transaction,
    vfs,
)

# TESTTMP is optional. This makes it convenient to run without run-tests.py
tvfs = vfs.vfs(encoding.environ.get('TESTTMP', b'/tmp'))

# Enable generaldelta otherwise revlog won't use delta as expected by the test
tvfs.options = {'generaldelta': True, 'revlogv1': True}

# The test wants to control whether to use delta explicitly, based on
# "storedeltachains".
revlog.revlog._isgooddelta = lambda self, d, textlen: self.storedeltachains

def abort(msg):
    print('abort: %s' % msg)
    # Return 0 so run-tests.py could compare the output.
    sys.exit()

# Register a revlog processor for flag EXTSTORED.
#
# It simply prepends a fixed header, and replaces '1' to 'i'. So it has
# insertion and replacement, and may be interesting to test revlog's line-based
# deltas.
_extheader = b'E\n'

def readprocessor(self, rawtext):
    # True: the returned text could be used to verify hash
    text = rawtext[len(_extheader):].replace(b'i', b'1')
    return text, True

def writeprocessor(self, text):
    # False: the returned rawtext shouldn't be used to verify hash
    rawtext = _extheader + text.replace(b'1', b'i')
    return rawtext, False

def rawprocessor(self, rawtext):
    # False: do not verify hash. Only the content returned by "readprocessor"
    # can be used to verify hash.
    return False

revlog.addflagprocessor(revlog.REVIDX_EXTSTORED,
                        (readprocessor, writeprocessor, rawprocessor))

# Utilities about reading and appending revlog

def newtransaction():
    # A transaction is required to write revlogs
    report = lambda msg: None
    return transaction.transaction(report, tvfs, {'plain': tvfs}, b'journal')

def newrevlog(name=b'_testrevlog.i', recreate=False):
    if recreate:
        tvfs.tryunlink(name)
    rlog = revlog.revlog(tvfs, name)
    return rlog

def appendrev(rlog, text, tr, isext=False, isdelta=True):
    '''Append a revision. If isext is True, set the EXTSTORED flag so flag
    processor will be used (and rawtext is different from text). If isdelta is
    True, force the revision to be a delta, otherwise it's full text.
    '''
    nextrev = len(rlog)
    p1 = rlog.node(nextrev - 1)
    p2 = node.nullid
    if isext:
        flags = revlog.REVIDX_EXTSTORED
    else:
        flags = revlog.REVIDX_DEFAULT_FLAGS
    # Change storedeltachains temporarily, to override revlog's delta decision
    rlog.storedeltachains = isdelta
    try:
        rlog.addrevision(text, tr, nextrev, p1, p2, flags=flags)
        return nextrev
    except Exception as ex:
        abort('rev %d: failed to append: %s' % (nextrev, ex))
    finally:
        # Restore storedeltachains. It is always True, see revlog.__init__
        rlog.storedeltachains = True

def addgroupcopy(rlog, tr, destname=b'_destrevlog.i', optimaldelta=True):
    '''Copy revlog to destname using revlog.addgroup. Return the copied revlog.

    This emulates push or pull. They use changegroup. Changegroup requires
    repo to work. We don't have a repo, so a dummy changegroup is used.

    If optimaldelta is True, use optimized delta parent, so the destination
    revlog could probably reuse it. Otherwise it builds sub-optimal delta, and
    the destination revlog needs more work to use it.

    This exercises some revlog.addgroup (and revlog._addrevision(text=None))
    code path, which is not covered by "appendrev" alone.
    '''
    class dummychangegroup(object):
        @staticmethod
        def deltachunk(pnode):
            pnode = pnode or node.nullid
            parentrev = rlog.rev(pnode)
            r = parentrev + 1
            if r >= len(rlog):
                return {}
            if optimaldelta:
                deltaparent = parentrev
            else:
                # suboptimal deltaparent
                deltaparent = min(0, parentrev)
            return {'node': rlog.node(r), 'p1': pnode, 'p2': node.nullid,
                    'cs': rlog.node(rlog.linkrev(r)), 'flags': rlog.flags(r),
                    'deltabase': rlog.node(deltaparent),
                    'delta': rlog.revdiff(deltaparent, r)}

    def linkmap(lnode):
        return rlog.rev(lnode)

    dlog = newrevlog(destname, recreate=True)
    dlog.addgroup(dummychangegroup(), linkmap, tr)
    return dlog

def lowlevelcopy(rlog, tr, destname=b'_destrevlog.i'):
    '''Like addgroupcopy, but use the low level revlog._addrevision directly.

    It exercises some code paths that are hard to reach easily otherwise.
    '''
    dlog = newrevlog(destname, recreate=True)
    for r in rlog:
        p1 = rlog.node(r - 1)
        p2 = node.nullid
        if r == 0:
            text = rlog.revision(r, raw=True)
            cachedelta = None
        else:
            # deltaparent is more interesting if it has the EXTSTORED flag.
            deltaparent = max([0] + [p for p in range(r - 2) if rlog.flags(p)])
            text = None
            cachedelta = (deltaparent, rlog.revdiff(deltaparent, r))
        flags = rlog.flags(r)
        ifh = dlog.opener(dlog.indexfile, 'a+')
        dfh = None
        if not dlog._inline:
            dfh = dlog.opener(dlog.datafile, 'a+')
        dlog._addrevision(rlog.node(r), text, tr, r, p1, p2, flags, cachedelta,
                          ifh, dfh)
    return dlog

# Utilities to generate revisions for testing

def genbits(n):
    '''Given a number n, generate (2 ** (n * 2) + 1) numbers in range(2 ** n).
    i.e. the generated numbers have a width of n bits.

    The combination of two adjacent numbers will cover all possible cases.
    That is to say, given any x, y where both x, and y are in range(2 ** n),
    there is an x followed immediately by y in the generated sequence.
    '''
    m = 2 ** n

    # Gray Code. See https://en.wikipedia.org/wiki/Gray_code
    gray = lambda x: x ^ (x >> 1)
    reversegray = dict((gray(i), i) for i in range(m))

    # Generate (n * 2) bit gray code, yield lower n bits as X, and look for
    # the next unused gray code where higher n bits equal to X.

    # For gray codes whose higher bits are X, a[X] of them have been used.
    a = [0] * m

    # Iterate from 0.
    x = 0
    yield x
    for i in range(m * m):
        x = reversegray[x]
        y = gray(a[x] + x * m) & (m - 1)
        assert a[x] < m
        a[x] += 1
        x = y
        yield x

def gentext(rev):
    '''Given a revision number, generate dummy text'''
    return b''.join(b'%d\n' % j for j in range(-1, rev % 5))

def writecases(rlog, tr):
    '''Write some revisions interested to the test.

    The test is interested in 3 properties of a revision:

        - Is it a delta or a full text? (isdelta)
          This is to catch some delta application issues.
        - Does it have a flag of EXTSTORED? (isext)
          This is to catch some flag processor issues. Especially when
          interacted with revlog deltas.
        - Is its text empty? (isempty)
          This is less important. It is intended to try to catch some careless
          checks like "if text" instead of "if text is None". Note: if flag
          processor is involved, raw text may be not empty.

    Write 65 revisions. So that all combinations of the above flags for
    adjacent revisions are covered. That is to say,

        len(set(
            (r.delta, r.ext, r.empty, (r+1).delta, (r+1).ext, (r+1).empty)
            for r in range(len(rlog) - 1)
           )) is 64.

    Where "r.delta", "r.ext", and "r.empty" are booleans matching properties
    mentioned above.

    Return expected [(text, rawtext)].
    '''
    result = []
    for i, x in enumerate(genbits(3)):
        isdelta, isext, isempty = bool(x & 1), bool(x & 2), bool(x & 4)
        if isempty:
            text = b''
        else:
            text = gentext(i)
        rev = appendrev(rlog, text, tr, isext=isext, isdelta=isdelta)

        # Verify text, rawtext, and rawsize
        if isext:
            rawtext = writeprocessor(None, text)[0]
        else:
            rawtext = text
        if rlog.rawsize(rev) != len(rawtext):
            abort('rev %d: wrong rawsize' % rev)
        if rlog.revision(rev, raw=False) != text:
            abort('rev %d: wrong text' % rev)
        if rlog.revision(rev, raw=True) != rawtext:
            abort('rev %d: wrong rawtext' % rev)
        result.append((text, rawtext))

        # Verify flags like isdelta, isext work as expected
        if bool(rlog.deltaparent(rev) > -1) != isdelta:
            abort('rev %d: isdelta is ineffective' % rev)
        if bool(rlog.flags(rev)) != isext:
            abort('rev %d: isext is ineffective' % rev)
    return result

# Main test and checking

def checkrevlog(rlog, expected):
    '''Check if revlog has expected contents. expected is [(text, rawtext)]'''
    # Test using different access orders. This could expose some issues
    # depending on revlog caching (see revlog._cache).
    for r0 in range(len(rlog) - 1):
        r1 = r0 + 1
        for revorder in [[r0, r1], [r1, r0]]:
            for raworder in [[True], [False], [True, False], [False, True]]:
                nlog = newrevlog()
                for rev in revorder:
                    for raw in raworder:
                        t = nlog.revision(rev, raw=raw)
                        if t != expected[rev][int(raw)]:
                            abort('rev %d: corrupted %stext'
                                  % (rev, raw and 'raw' or ''))

def maintest():
    expected = rl = None
    with newtransaction() as tr:
        rl = newrevlog(recreate=True)
        expected = writecases(rl, tr)
        checkrevlog(rl, expected)
        print('local test passed')
        # Copy via revlog.addgroup
        rl1 = addgroupcopy(rl, tr)
        checkrevlog(rl1, expected)
        rl2 = addgroupcopy(rl, tr, optimaldelta=False)
        checkrevlog(rl2, expected)
        print('addgroupcopy test passed')
        # Copy via revlog.clone
        rl3 = newrevlog(name='_destrevlog3.i', recreate=True)
        rl.clone(tr, rl3)
        checkrevlog(rl3, expected)
        print('clone test passed')
        # Copy via low-level revlog._addrevision
        rl4 = lowlevelcopy(rl, tr)
        checkrevlog(rl4, expected)
        print('lowlevelcopy test passed')

try:
    maintest()
except Exception as ex:
    abort('crashed: %s' % ex)