Mercurial > hg
view mercurial/pure/mpatch.py @ 19625:6a411a06cb1f
revlog: pass node as an argument of addrevision
This change will allow revlog subclasses that override 'checkhash' method
to use custom strategy of computing nodeids without overriding 'addrevision'
method. In particular this change is necessary to implement manifest
compression.
author | Wojciech Lopata <lopek@fb.com> |
---|---|
date | Mon, 19 Aug 2013 11:25:23 -0700 |
parents | 525fdb738975 |
children | 9a17576103a4 |
line wrap: on
line source
# mpatch.py - Python implementation of mpatch.c # # Copyright 2009 Matt Mackall <mpm@selenic.com> and others # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import struct try: from cStringIO import StringIO except ImportError: from StringIO import StringIO # This attempts to apply a series of patches in time proportional to # the total size of the patches, rather than patches * len(text). This # means rather than shuffling strings around, we shuffle around # pointers to fragments with fragment lists. # # When the fragment lists get too long, we collapse them. To do this # efficiently, we do all our operations inside a buffer created by # mmap and simply use memmove. This avoids creating a bunch of large # temporary string buffers. def patches(a, bins): if not bins: return a plens = [len(x) for x in bins] pl = sum(plens) bl = len(a) + pl tl = bl + bl + pl # enough for the patches and two working texts b1, b2 = 0, bl if not tl: return a m = StringIO() def move(dest, src, count): """move count bytes from src to dest The file pointer is left at the end of dest. """ m.seek(src) buf = m.read(count) m.seek(dest) m.write(buf) # load our original text m.write(a) frags = [(len(a), b1)] # copy all the patches into our segment so we can memmove from them pos = b2 + bl m.seek(pos) for p in bins: m.write(p) def pull(dst, src, l): # pull l bytes from src while l: f = src.pop() if f[0] > l: # do we need to split? src.append((f[0] - l, f[1] + l)) dst.append((l, f[1])) return dst.append(f) l -= f[0] def collect(buf, list): start = buf for l, p in reversed(list): move(buf, p, l) buf += l return (buf - start, start) for plen in plens: # if our list gets too long, execute it if len(frags) > 128: b2, b1 = b1, b2 frags = [collect(b1, frags)] new = [] end = pos + plen last = 0 while pos < end: m.seek(pos) p1, p2, l = struct.unpack(">lll", m.read(12)) pull(new, frags, p1 - last) # what didn't change pull([], frags, p2 - p1) # what got deleted new.append((l, pos + 12)) # what got added pos += l + 12 last = p2 frags.extend(reversed(new)) # what was left at the end t = collect(b2, frags) m.seek(t[1]) return m.read(t[0]) def patchedsize(orig, delta): outlen, last, bin = 0, 0, 0 binend = len(delta) data = 12 while data <= binend: decode = delta[bin:bin + 12] start, end, length = struct.unpack(">lll", decode) if start > end: break bin = data + length data = bin + 12 outlen += start - last last = end outlen += length if bin != binend: raise ValueError("patch cannot be decoded") outlen += orig - last return outlen