Mercurial > hg
view mercurial/exewrapper.c @ 28029:72072cfc7e91
update: warn about other topological heads on bare update
A concern around the user experience of Mercurial is user getting stuck on there
own topological branch forever. For example, someone pulling another topological
branch, missing that message in pull asking them to merge and getting stuck on
there own local branch.
The current way to "address" this concern was for bare 'hg update' to target the
tipmost (also latest pulled) changesets and complain when the update was not
linear. That way, failure to merge newly pulled changesets would result in some
kind of failure.
Yet the failure was quite obscure, not working in all cases (eg: commit right
after pull) and the behavior was very impractical in the common case
(eg: issue4673).
To be able to change that behavior, we need to provide other ways to alert a
user stucks on one of many topological head. We do so with an extra message after
bare update:
1 other heads for branch "default"
Bookmark get its own special version:
1 other divergent bookmarks for "foobar"
There is significant room to improve the message itself, and we should augment
it with hint about how to see theses other heads or handle the situation (see
in-line comment). But having "a" message is already a significant improvement
compared to the existing situation. Once we have it we can iterate on a better
version of it. As having such message is an important step toward changing the
default destination for update and other nicety, I would like to move forward
quickly on getting such message.
This was discussed during London - October 2015 Sprint.
author | Pierre-Yves David <pierre-yves.david@fb.com> |
---|---|
date | Tue, 02 Feb 2016 14:49:02 +0000 |
parents | 640b807dcce0 |
children | 210bb28ca4fb |
line wrap: on
line source
/* exewrapper.c - wrapper for calling a python script on Windows Copyright 2012 Adrian Buehlmann <adrian@cadifra.com> and others This software may be used and distributed according to the terms of the GNU General Public License version 2 or any later version. */ #include <stdio.h> #include <windows.h> #include "hgpythonlib.h" #ifdef __GNUC__ int strcat_s(char *d, size_t n, const char *s) { return !strncat(d, s, n); } int strcpy_s(char *d, size_t n, const char *s) { return !strncpy(d, s, n); } #endif static char pyscript[MAX_PATH + 10]; static char pyhome[MAX_PATH + 10]; static char envpyhome[MAX_PATH + 10]; static char pydllfile[MAX_PATH + 10]; int main(int argc, char *argv[]) { char *p; int ret; int i; int n; char **pyargv; WIN32_FIND_DATA fdata; HANDLE hfind; const char *err; HMODULE pydll; void (__cdecl *Py_SetPythonHome)(char *home); int (__cdecl *Py_Main)(int argc, char *argv[]); if (GetModuleFileName(NULL, pyscript, sizeof(pyscript)) == 0) { err = "GetModuleFileName failed"; goto bail; } p = strrchr(pyscript, '.'); if (p == NULL) { err = "malformed module filename"; goto bail; } *p = 0; /* cut trailing ".exe" */ strcpy_s(pyhome, sizeof(pyhome), pyscript); hfind = FindFirstFile(pyscript, &fdata); if (hfind != INVALID_HANDLE_VALUE) { /* pyscript exists, close handle */ FindClose(hfind); } else { /* file pyscript isn't there, take <pyscript>exe.py */ strcat_s(pyscript, sizeof(pyscript), "exe.py"); } pydll = NULL; /* We first check, that environment variable PYTHONHOME is *not* set. This just mimicks the behavior of the regular python.exe, which uses PYTHONHOME to find its installation directory (if it has been set). Note: Users of HackableMercurial are expected to *not* set PYTHONHOME! */ if (GetEnvironmentVariable("PYTHONHOME", envpyhome, sizeof(envpyhome)) == 0) { /* Environment var PYTHONHOME is *not* set. Let's see if we are running inside a HackableMercurial. */ p = strrchr(pyhome, '\\'); if (p == NULL) { err = "can't find backslash in module filename"; goto bail; } *p = 0; /* cut at directory */ /* check for private Python of HackableMercurial */ strcat_s(pyhome, sizeof(pyhome), "\\hg-python"); hfind = FindFirstFile(pyhome, &fdata); if (hfind != INVALID_HANDLE_VALUE) { /* path pyhome exists, let's use it */ FindClose(hfind); strcpy_s(pydllfile, sizeof(pydllfile), pyhome); strcat_s(pydllfile, sizeof(pydllfile), "\\" HGPYTHONLIB); pydll = LoadLibrary(pydllfile); if (pydll == NULL) { err = "failed to load private Python DLL " HGPYTHONLIB ".dll"; goto bail; } Py_SetPythonHome = (void*)GetProcAddress(pydll, "Py_SetPythonHome"); if (Py_SetPythonHome == NULL) { err = "failed to get Py_SetPythonHome"; goto bail; } Py_SetPythonHome(pyhome); } } if (pydll == NULL) { pydll = LoadLibrary(HGPYTHONLIB); if (pydll == NULL) { err = "failed to load Python DLL " HGPYTHONLIB ".dll"; goto bail; } } Py_Main = (void*)GetProcAddress(pydll, "Py_Main"); if (Py_Main == NULL) { err = "failed to get Py_Main"; goto bail; } /* Only add the pyscript to the args, if it's not already there. It may already be there, if the script spawned a child process of itself, in the same way as it got called, that is, with the pyscript already in place. So we optionally accept the pyscript as the first argument (argv[1]), letting our exe taking the role of the python interpreter. */ if (argc >= 2 && strcmp(argv[1], pyscript) == 0) { /* pyscript is already in the args, so there is no need to copy the args and we can directly call the python interpreter with the original args. */ return Py_Main(argc, argv); } /* Start assembling the args for the Python interpreter call. We put the name of our exe (argv[0]) in the position where the python.exe canonically is, and insert the pyscript next. */ pyargv = malloc((argc + 5) * sizeof(char*)); if (pyargv == NULL) { err = "not enough memory"; goto bail; } n = 0; pyargv[n++] = argv[0]; pyargv[n++] = pyscript; /* copy remaining args from the command line */ for (i = 1; i < argc; i++) pyargv[n++] = argv[i]; /* argv[argc] is guaranteed to be NULL, so we forward that guarantee */ pyargv[n] = NULL; ret = Py_Main(n, pyargv); /* The Python interpreter call */ free(pyargv); return ret; bail: fprintf(stderr, "abort: %s\n", err); return 255; }