contrib/python-zstandard/tests/common.py
author Gregory Szorc <gregory.szorc@gmail.com>
Mon, 08 Oct 2018 16:27:40 -0700
changeset 40121 73fef626dae3
parent 37495 b1fb341d8a61
child 42070 675775c33ab6
permissions -rw-r--r--
zstandard: vendor python-zstandard 0.10.1 This was just released. The upstream source distribution from PyPI was extracted. Unwanted files were removed. The clang-format ignore list was updated to reflect the new source of files. setup.py was updated to pass a new argument to python-zstandard's function for returning an Extension instance. Upstream had to change to use relative paths because Python 3.7's packaging doesn't seem to like absolute paths when defining sources, includes, etc. The default relative path calculation is relative to setup_zstd.py which is different from the directory of Mercurial's setup.py. The project contains a vendored copy of zstandard 1.3.6. The old version was 1.3.4. The API should be backwards compatible and nothing in core should need adjusted. However, there is a new "chunker" API that we may find useful in places where we want to emit compressed chunks of a fixed size. There are a pair of bug fixes in 0.10.0 with regards to compressobj() and decompressobj() when block flushing is used. I actually found these bugs when introducing these APIs in Mercurial! But existing Mercurial code is not affected because we don't perform block flushing. # no-check-commit because 3rd party code has different style guidelines Differential Revision: https://phab.mercurial-scm.org/D4911

import imp
import inspect
import io
import os
import types

try:
    import hypothesis
except ImportError:
    hypothesis = None


def make_cffi(cls):
    """Decorator to add CFFI versions of each test method."""

    # The module containing this class definition should
    # `import zstandard as zstd`. Otherwise things may blow up.
    mod = inspect.getmodule(cls)
    if not hasattr(mod, 'zstd'):
        raise Exception('test module does not contain "zstd" symbol')

    if not hasattr(mod.zstd, 'backend'):
        raise Exception('zstd symbol does not have "backend" attribute; did '
                        'you `import zstandard as zstd`?')

    # If `import zstandard` already chose the cffi backend, there is nothing
    # for us to do: we only add the cffi variation if the default backend
    # is the C extension.
    if mod.zstd.backend == 'cffi':
        return cls

    old_env = dict(os.environ)
    os.environ['PYTHON_ZSTANDARD_IMPORT_POLICY'] = 'cffi'
    try:
        try:
            mod_info = imp.find_module('zstandard')
            mod = imp.load_module('zstandard_cffi', *mod_info)
        except ImportError:
            return cls
    finally:
        os.environ.clear()
        os.environ.update(old_env)

    if mod.backend != 'cffi':
        raise Exception('got the zstandard %s backend instead of cffi' % mod.backend)

    # If CFFI version is available, dynamically construct test methods
    # that use it.

    for attr in dir(cls):
        fn = getattr(cls, attr)
        if not inspect.ismethod(fn) and not inspect.isfunction(fn):
            continue

        if not fn.__name__.startswith('test_'):
            continue

        name = '%s_cffi' % fn.__name__

        # Replace the "zstd" symbol with the CFFI module instance. Then copy
        # the function object and install it in a new attribute.
        if isinstance(fn, types.FunctionType):
            globs = dict(fn.__globals__)
            globs['zstd'] = mod
            new_fn = types.FunctionType(fn.__code__, globs, name,
                                        fn.__defaults__, fn.__closure__)
            new_method = new_fn
        else:
            globs = dict(fn.__func__.func_globals)
            globs['zstd'] = mod
            new_fn = types.FunctionType(fn.__func__.func_code, globs, name,
                                        fn.__func__.func_defaults,
                                        fn.__func__.func_closure)
            new_method = types.UnboundMethodType(new_fn, fn.im_self,
                                                 fn.im_class)

        setattr(cls, name, new_method)

    return cls


class OpCountingBytesIO(io.BytesIO):
    def __init__(self, *args, **kwargs):
        self._read_count = 0
        self._write_count = 0
        return super(OpCountingBytesIO, self).__init__(*args, **kwargs)

    def read(self, *args):
        self._read_count += 1
        return super(OpCountingBytesIO, self).read(*args)

    def write(self, data):
        self._write_count += 1
        return super(OpCountingBytesIO, self).write(data)


_source_files = []


def random_input_data():
    """Obtain the raw content of source files.

    This is used for generating "random" data to feed into fuzzing, since it is
    faster than random content generation.
    """
    if _source_files:
        return _source_files

    for root, dirs, files in os.walk(os.path.dirname(__file__)):
        dirs[:] = list(sorted(dirs))
        for f in sorted(files):
            try:
                with open(os.path.join(root, f), 'rb') as fh:
                    data = fh.read()
                    if data:
                        _source_files.append(data)
            except OSError:
                pass

    return _source_files


def generate_samples():
    inputs = [
        b'foo',
        b'bar',
        b'abcdef',
        b'sometext',
        b'baz',
    ]

    samples = []

    for i in range(128):
        samples.append(inputs[i % 5])
        samples.append(inputs[i % 5] * (i + 3))
        samples.append(inputs[-(i % 5)] * (i + 2))

    return samples


if hypothesis:
    default_settings = hypothesis.settings()
    hypothesis.settings.register_profile('default', default_settings)

    ci_settings = hypothesis.settings(max_examples=2500,
                                      max_iterations=2500)
    hypothesis.settings.register_profile('ci', ci_settings)

    hypothesis.settings.load_profile(
        os.environ.get('HYPOTHESIS_PROFILE', 'default'))