view mercurial/py3kcompat.py @ 26644:74de1c59f71c

clonebundles: filter on bundle specification Not all clients are capable of reading every bundle. Currently, content negotiation to ensure a server sends a client a compatible bundle format is performed at request time. The response bundle is dynamically generated at request time, so this works fine. Clone bundles are statically generated *before* the request. This means that a modern server could produce bundles that a legacy client isn't capable of reading. Without some kind of "type hint" in the clone bundles manifest, a client may attempt to download an incompatible bundle. Furthermore, a client may not realize a bundle is incompatible until it has processed part of the bundle (imagine consuming a 1 GB changegroup bundle2 part only to discover the bundle2 part afterwards is incompatibl). This would waste time and resources. And it isn't very user friendly. Clone bundle manifests thus need to advertise the *exact* format of the hosted bundles so clients may filter out entries that they don't know how to read. This patch introduces that mechanism. We introduce the BUNDLESPEC attribute to declare the "bundle specification" of the entry. Bundle specifications are parsed using exchange.parsebundlespecification, which uses the same strings as the "--type" argument to `hg bundle`. The supported bundle specifications are well defined and backwards compatible. When a client encounters a BUNDLESPEC that is invalid or unsupported, it silently ignores the entry.
author Gregory Szorc <gregory.szorc@gmail.com>
date Tue, 13 Oct 2015 11:45:30 -0700
parents a7a9d84f5e4a
children 5bfd01a3c2a9
line wrap: on
line source

# py3kcompat.py - compatibility definitions for running hg in py3k
#
# Copyright 2010 Renato Cunha <renatoc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

import builtins

from numbers import Number

def bytesformatter(format, args):
    '''Custom implementation of a formatter for bytestrings.

    This function currently relies on the string formatter to do the
    formatting and always returns bytes objects.

    >>> bytesformatter(20, 10)
    0
    >>> bytesformatter('unicode %s, %s!', ('string', 'foo'))
    b'unicode string, foo!'
    >>> bytesformatter(b'test %s', 'me')
    b'test me'
    >>> bytesformatter('test %s', 'me')
    b'test me'
    >>> bytesformatter(b'test %s', b'me')
    b'test me'
    >>> bytesformatter('test %s', b'me')
    b'test me'
    >>> bytesformatter('test %d: %s', (1, b'result'))
    b'test 1: result'
    '''
    # The current implementation just converts from bytes to unicode, do
    # what's needed and then convert the results back to bytes.
    # Another alternative is to use the Python C API implementation.
    if isinstance(format, Number):
        # If the fixer erroneously passes a number remainder operation to
        # bytesformatter, we just return the correct operation
        return format % args
    if isinstance(format, bytes):
        format = format.decode('utf-8', 'surrogateescape')
    if isinstance(args, bytes):
        args = args.decode('utf-8', 'surrogateescape')
    if isinstance(args, tuple):
        newargs = []
        for arg in args:
            if isinstance(arg, bytes):
                arg = arg.decode('utf-8', 'surrogateescape')
            newargs.append(arg)
        args = tuple(newargs)
    ret = format % args
    return ret.encode('utf-8', 'surrogateescape')
builtins.bytesformatter = bytesformatter

origord = builtins.ord
def fakeord(char):
    if isinstance(char, int):
        return char
    return origord(char)
builtins.ord = fakeord

if __name__ == '__main__':
    import doctest
    doctest.testmod()