phabricator: change "readpatch" to be more flexible
Previously, `readpatch` and `querydrev` take a same `params` and `stack`
parameters. This patch changes `readpatch` so it takes the output of
`querydrev`, not the input of `querydrev`. This makes the code more
flexible and cleaner.
Differential Revision: https://phab.mercurial-scm.org/D124
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, see
# <http://www.gnu.org/licenses/>.
# This file is part of urlgrabber, a high-level cross-protocol url-grabber
# Copyright 2002-2004 Michael D. Stenner, Ryan Tomayko
# Modified by Benoit Boissinot:
# - fix for digest auth (inspired from urllib2.py @ Python v2.4)
# Modified by Dirkjan Ochtman:
# - import md5 function from a local util module
# Modified by Augie Fackler:
# - add safesend method and use it to prevent broken pipe errors
# on large POST requests
"""An HTTP handler for urllib2 that supports HTTP 1.1 and keepalive.
>>> import urllib2
>>> from keepalive import HTTPHandler
>>> keepalive_handler = HTTPHandler()
>>> opener = urlreq.buildopener(keepalive_handler)
>>> urlreq.installopener(opener)
>>>
>>> fo = urlreq.urlopen('http://www.python.org')
If a connection to a given host is requested, and all of the existing
connections are still in use, another connection will be opened. If
the handler tries to use an existing connection but it fails in some
way, it will be closed and removed from the pool.
To remove the handler, simply re-run build_opener with no arguments, and
install that opener.
You can explicitly close connections by using the close_connection()
method of the returned file-like object (described below) or you can
use the handler methods:
close_connection(host)
close_all()
open_connections()
NOTE: using the close_connection and close_all methods of the handler
should be done with care when using multiple threads.
* there is nothing that prevents another thread from creating new
connections immediately after connections are closed
* no checks are done to prevent in-use connections from being closed
>>> keepalive_handler.close_all()
EXTRA ATTRIBUTES AND METHODS
Upon a status of 200, the object returned has a few additional
attributes and methods, which should not be used if you want to
remain consistent with the normal urllib2-returned objects:
close_connection() - close the connection to the host
readlines() - you know, readlines()
status - the return status (i.e. 404)
reason - english translation of status (i.e. 'File not found')
If you want the best of both worlds, use this inside an
AttributeError-catching try:
>>> try: status = fo.status
>>> except AttributeError: status = None
Unfortunately, these are ONLY there if status == 200, so it's not
easy to distinguish between non-200 responses. The reason is that
urllib2 tries to do clever things with error codes 301, 302, 401,
and 407, and it wraps the object upon return.
"""
# $Id: keepalive.py,v 1.14 2006/04/04 21:00:32 mstenner Exp $
from __future__ import absolute_import, print_function
import errno
import hashlib
import socket
import sys
import threading
from . import (
util,
)
httplib = util.httplib
urlerr = util.urlerr
urlreq = util.urlreq
DEBUG = None
class ConnectionManager(object):
"""
The connection manager must be able to:
* keep track of all existing
"""
def __init__(self):
self._lock = threading.Lock()
self._hostmap = {} # map hosts to a list of connections
self._connmap = {} # map connections to host
self._readymap = {} # map connection to ready state
def add(self, host, connection, ready):
self._lock.acquire()
try:
if host not in self._hostmap:
self._hostmap[host] = []
self._hostmap[host].append(connection)
self._connmap[connection] = host
self._readymap[connection] = ready
finally:
self._lock.release()
def remove(self, connection):
self._lock.acquire()
try:
try:
host = self._connmap[connection]
except KeyError:
pass
else:
del self._connmap[connection]
del self._readymap[connection]
self._hostmap[host].remove(connection)
if not self._hostmap[host]: del self._hostmap[host]
finally:
self._lock.release()
def set_ready(self, connection, ready):
try:
self._readymap[connection] = ready
except KeyError:
pass
def get_ready_conn(self, host):
conn = None
self._lock.acquire()
try:
if host in self._hostmap:
for c in self._hostmap[host]:
if self._readymap[c]:
self._readymap[c] = 0
conn = c
break
finally:
self._lock.release()
return conn
def get_all(self, host=None):
if host:
return list(self._hostmap.get(host, []))
else:
return dict(self._hostmap)
class KeepAliveHandler(object):
def __init__(self):
self._cm = ConnectionManager()
#### Connection Management
def open_connections(self):
"""return a list of connected hosts and the number of connections
to each. [('foo.com:80', 2), ('bar.org', 1)]"""
return [(host, len(li)) for (host, li) in self._cm.get_all().items()]
def close_connection(self, host):
"""close connection(s) to <host>
host is the host:port spec, as in 'www.cnn.com:8080' as passed in.
no error occurs if there is no connection to that host."""
for h in self._cm.get_all(host):
self._cm.remove(h)
h.close()
def close_all(self):
"""close all open connections"""
for host, conns in self._cm.get_all().iteritems():
for h in conns:
self._cm.remove(h)
h.close()
def _request_closed(self, request, host, connection):
"""tells us that this request is now closed and that the
connection is ready for another request"""
self._cm.set_ready(connection, 1)
def _remove_connection(self, host, connection, close=0):
if close:
connection.close()
self._cm.remove(connection)
#### Transaction Execution
def http_open(self, req):
return self.do_open(HTTPConnection, req)
def do_open(self, http_class, req):
host = req.get_host()
if not host:
raise urlerr.urlerror('no host given')
try:
h = self._cm.get_ready_conn(host)
while h:
r = self._reuse_connection(h, req, host)
# if this response is non-None, then it worked and we're
# done. Break out, skipping the else block.
if r:
break
# connection is bad - possibly closed by server
# discard it and ask for the next free connection
h.close()
self._cm.remove(h)
h = self._cm.get_ready_conn(host)
else:
# no (working) free connections were found. Create a new one.
h = http_class(host)
if DEBUG:
DEBUG.info("creating new connection to %s (%d)",
host, id(h))
self._cm.add(host, h, 0)
self._start_transaction(h, req)
r = h.getresponse()
except (socket.error, httplib.HTTPException) as err:
raise urlerr.urlerror(err)
# if not a persistent connection, don't try to reuse it
if r.will_close:
self._cm.remove(h)
if DEBUG:
DEBUG.info("STATUS: %s, %s", r.status, r.reason)
r._handler = self
r._host = host
r._url = req.get_full_url()
r._connection = h
r.code = r.status
r.headers = r.msg
r.msg = r.reason
return r
def _reuse_connection(self, h, req, host):
"""start the transaction with a re-used connection
return a response object (r) upon success or None on failure.
This DOES not close or remove bad connections in cases where
it returns. However, if an unexpected exception occurs, it
will close and remove the connection before re-raising.
"""
try:
self._start_transaction(h, req)
r = h.getresponse()
# note: just because we got something back doesn't mean it
# worked. We'll check the version below, too.
except (socket.error, httplib.HTTPException):
r = None
except: # re-raises
# adding this block just in case we've missed
# something we will still raise the exception, but
# lets try and close the connection and remove it
# first. We previously got into a nasty loop
# where an exception was uncaught, and so the
# connection stayed open. On the next try, the
# same exception was raised, etc. The trade-off is
# that it's now possible this call will raise
# a DIFFERENT exception
if DEBUG:
DEBUG.error("unexpected exception - closing "
"connection to %s (%d)", host, id(h))
self._cm.remove(h)
h.close()
raise
if r is None or r.version == 9:
# httplib falls back to assuming HTTP 0.9 if it gets a
# bad header back. This is most likely to happen if
# the socket has been closed by the server since we
# last used the connection.
if DEBUG:
DEBUG.info("failed to re-use connection to %s (%d)",
host, id(h))
r = None
else:
if DEBUG:
DEBUG.info("re-using connection to %s (%d)", host, id(h))
return r
def _start_transaction(self, h, req):
# What follows mostly reimplements HTTPConnection.request()
# except it adds self.parent.addheaders in the mix and sends headers
# in a deterministic order (to make testing easier).
headers = util.sortdict(self.parent.addheaders)
headers.update(sorted(req.headers.items()))
headers.update(sorted(req.unredirected_hdrs.items()))
headers = util.sortdict((n.lower(), v) for n, v in headers.items())
skipheaders = {}
for n in ('host', 'accept-encoding'):
if n in headers:
skipheaders['skip_' + n.replace('-', '_')] = 1
try:
if req.has_data():
data = req.get_data()
h.putrequest(
req.get_method(), req.get_selector(), **skipheaders)
if 'content-type' not in headers:
h.putheader('Content-type',
'application/x-www-form-urlencoded')
if 'content-length' not in headers:
h.putheader('Content-length', '%d' % len(data))
else:
h.putrequest(
req.get_method(), req.get_selector(), **skipheaders)
except socket.error as err:
raise urlerr.urlerror(err)
for k, v in headers.items():
h.putheader(k, v)
h.endheaders()
if req.has_data():
h.send(data)
class HTTPHandler(KeepAliveHandler, urlreq.httphandler):
pass
class HTTPResponse(httplib.HTTPResponse):
# we need to subclass HTTPResponse in order to
# 1) add readline() and readlines() methods
# 2) add close_connection() methods
# 3) add info() and geturl() methods
# in order to add readline(), read must be modified to deal with a
# buffer. example: readline must read a buffer and then spit back
# one line at a time. The only real alternative is to read one
# BYTE at a time (ick). Once something has been read, it can't be
# put back (ok, maybe it can, but that's even uglier than this),
# so if you THEN do a normal read, you must first take stuff from
# the buffer.
# the read method wraps the original to accommodate buffering,
# although read() never adds to the buffer.
# Both readline and readlines have been stolen with almost no
# modification from socket.py
def __init__(self, sock, debuglevel=0, strict=0, method=None):
httplib.HTTPResponse.__init__(self, sock, debuglevel=debuglevel,
strict=True, method=method,
buffering=True)
self.fileno = sock.fileno
self.code = None
self._rbuf = ''
self._rbufsize = 8096
self._handler = None # inserted by the handler later
self._host = None # (same)
self._url = None # (same)
self._connection = None # (same)
_raw_read = httplib.HTTPResponse.read
def close(self):
if self.fp:
self.fp.close()
self.fp = None
if self._handler:
self._handler._request_closed(self, self._host,
self._connection)
def close_connection(self):
self._handler._remove_connection(self._host, self._connection, close=1)
self.close()
def info(self):
return self.headers
def geturl(self):
return self._url
def read(self, amt=None):
# the _rbuf test is only in this first if for speed. It's not
# logically necessary
if self._rbuf and not amt is None:
L = len(self._rbuf)
if amt > L:
amt -= L
else:
s = self._rbuf[:amt]
self._rbuf = self._rbuf[amt:]
return s
s = self._rbuf + self._raw_read(amt)
self._rbuf = ''
return s
# stolen from Python SVN #68532 to fix issue1088
def _read_chunked(self, amt):
chunk_left = self.chunk_left
parts = []
while True:
if chunk_left is None:
line = self.fp.readline()
i = line.find(';')
if i >= 0:
line = line[:i] # strip chunk-extensions
try:
chunk_left = int(line, 16)
except ValueError:
# close the connection as protocol synchronization is
# probably lost
self.close()
raise httplib.IncompleteRead(''.join(parts))
if chunk_left == 0:
break
if amt is None:
parts.append(self._safe_read(chunk_left))
elif amt < chunk_left:
parts.append(self._safe_read(amt))
self.chunk_left = chunk_left - amt
return ''.join(parts)
elif amt == chunk_left:
parts.append(self._safe_read(amt))
self._safe_read(2) # toss the CRLF at the end of the chunk
self.chunk_left = None
return ''.join(parts)
else:
parts.append(self._safe_read(chunk_left))
amt -= chunk_left
# we read the whole chunk, get another
self._safe_read(2) # toss the CRLF at the end of the chunk
chunk_left = None
# read and discard trailer up to the CRLF terminator
### note: we shouldn't have any trailers!
while True:
line = self.fp.readline()
if not line:
# a vanishingly small number of sites EOF without
# sending the trailer
break
if line == '\r\n':
break
# we read everything; close the "file"
self.close()
return ''.join(parts)
def readline(self):
# Fast path for a line is already available in read buffer.
i = self._rbuf.find('\n')
if i >= 0:
i += 1
line = self._rbuf[:i]
self._rbuf = self._rbuf[i:]
return line
# No newline in local buffer. Read until we find one.
chunks = [self._rbuf]
i = -1
readsize = self._rbufsize
while True:
new = self._raw_read(readsize)
if not new:
break
chunks.append(new)
i = new.find('\n')
if i >= 0:
break
# We either have exhausted the stream or have a newline in chunks[-1].
# EOF
if i == -1:
self._rbuf = ''
return ''.join(chunks)
i += 1
self._rbuf = chunks[-1][i:]
chunks[-1] = chunks[-1][:i]
return ''.join(chunks)
def readlines(self, sizehint=0):
total = 0
list = []
while True:
line = self.readline()
if not line:
break
list.append(line)
total += len(line)
if sizehint and total >= sizehint:
break
return list
def safesend(self, str):
"""Send `str' to the server.
Shamelessly ripped off from httplib to patch a bad behavior.
"""
# _broken_pipe_resp is an attribute we set in this function
# if the socket is closed while we're sending data but
# the server sent us a response before hanging up.
# In that case, we want to pretend to send the rest of the
# outgoing data, and then let the user use getresponse()
# (which we wrap) to get this last response before
# opening a new socket.
if getattr(self, '_broken_pipe_resp', None) is not None:
return
if self.sock is None:
if self.auto_open:
self.connect()
else:
raise httplib.NotConnected
# send the data to the server. if we get a broken pipe, then close
# the socket. we want to reconnect when somebody tries to send again.
#
# NOTE: we DO propagate the error, though, because we cannot simply
# ignore the error... the caller will know if they can retry.
if self.debuglevel > 0:
print("send:", repr(str))
try:
blocksize = 8192
read = getattr(str, 'read', None)
if read is not None:
if self.debuglevel > 0:
print("sending a read()able")
data = read(blocksize)
while data:
self.sock.sendall(data)
data = read(blocksize)
else:
self.sock.sendall(str)
except socket.error as v:
reraise = True
if v[0] == errno.EPIPE: # Broken pipe
if self._HTTPConnection__state == httplib._CS_REQ_SENT:
self._broken_pipe_resp = None
self._broken_pipe_resp = self.getresponse()
reraise = False
self.close()
if reraise:
raise
def wrapgetresponse(cls):
"""Wraps getresponse in cls with a broken-pipe sane version.
"""
def safegetresponse(self):
# In safesend() we might set the _broken_pipe_resp
# attribute, in which case the socket has already
# been closed and we just need to give them the response
# back. Otherwise, we use the normal response path.
r = getattr(self, '_broken_pipe_resp', None)
if r is not None:
return r
return cls.getresponse(self)
safegetresponse.__doc__ = cls.getresponse.__doc__
return safegetresponse
class HTTPConnection(httplib.HTTPConnection):
# use the modified response class
response_class = HTTPResponse
send = safesend
getresponse = wrapgetresponse(httplib.HTTPConnection)
#########################################################################
##### TEST FUNCTIONS
#########################################################################
def continuity(url):
md5 = hashlib.md5
format = '%25s: %s'
# first fetch the file with the normal http handler
opener = urlreq.buildopener()
urlreq.installopener(opener)
fo = urlreq.urlopen(url)
foo = fo.read()
fo.close()
m = md5(foo)
print(format % ('normal urllib', m.hexdigest()))
# now install the keepalive handler and try again
opener = urlreq.buildopener(HTTPHandler())
urlreq.installopener(opener)
fo = urlreq.urlopen(url)
foo = fo.read()
fo.close()
m = md5(foo)
print(format % ('keepalive read', m.hexdigest()))
fo = urlreq.urlopen(url)
foo = ''
while True:
f = fo.readline()
if f:
foo = foo + f
else: break
fo.close()
m = md5(foo)
print(format % ('keepalive readline', m.hexdigest()))
def comp(N, url):
print(' making %i connections to:\n %s' % (N, url))
util.stdout.write(' first using the normal urllib handlers')
# first use normal opener
opener = urlreq.buildopener()
urlreq.installopener(opener)
t1 = fetch(N, url)
print(' TIME: %.3f s' % t1)
util.stdout.write(' now using the keepalive handler ')
# now install the keepalive handler and try again
opener = urlreq.buildopener(HTTPHandler())
urlreq.installopener(opener)
t2 = fetch(N, url)
print(' TIME: %.3f s' % t2)
print(' improvement factor: %.2f' % (t1 / t2))
def fetch(N, url, delay=0):
import time
lens = []
starttime = time.time()
for i in range(N):
if delay and i > 0:
time.sleep(delay)
fo = urlreq.urlopen(url)
foo = fo.read()
fo.close()
lens.append(len(foo))
diff = time.time() - starttime
j = 0
for i in lens[1:]:
j = j + 1
if not i == lens[0]:
print("WARNING: inconsistent length on read %i: %i" % (j, i))
return diff
def test_timeout(url):
global DEBUG
dbbackup = DEBUG
class FakeLogger(object):
def debug(self, msg, *args):
print(msg % args)
info = warning = error = debug
DEBUG = FakeLogger()
print(" fetching the file to establish a connection")
fo = urlreq.urlopen(url)
data1 = fo.read()
fo.close()
i = 20
print(" waiting %i seconds for the server to close the connection" % i)
while i > 0:
util.stdout.write('\r %2i' % i)
util.stdout.flush()
time.sleep(1)
i -= 1
util.stderr.write('\r')
print(" fetching the file a second time")
fo = urlreq.urlopen(url)
data2 = fo.read()
fo.close()
if data1 == data2:
print(' data are identical')
else:
print(' ERROR: DATA DIFFER')
DEBUG = dbbackup
def test(url, N=10):
print("performing continuity test (making sure stuff isn't corrupted)")
continuity(url)
print('')
print("performing speed comparison")
comp(N, url)
print('')
print("performing dropped-connection check")
test_timeout(url)
if __name__ == '__main__':
import time
try:
N = int(sys.argv[1])
url = sys.argv[2]
except (IndexError, ValueError):
print("%s <integer> <url>" % sys.argv[0])
else:
test(url, N)