Mercurial > hg
view tests/test-batching.py @ 37438:7b7ca9ba2de5
commands: don't violate storage abstractions in `manifest --all`
Previously, we asked the store to emit its data files. For modern
repos, this would use fncache to resolve the set of files then would
stat() each file. For my copy of the mozilla-unified repository, this
took 3.3-10s depending on the state of my filesystem cache to render
449,790 items.
The previous behavior was a massive layering violation because it
assumed tracked files would have specific filenames in specific
directories. Alternate storage backends would violate this assumption.
The new behavior scans the changelog entries for the set of files
changed by each commit. It aggregates them into a set and then
sorts and prints the result. This reliably takes ~16.3s on my
machine. ~80% of the time is spent in zlib decompression.
The performance regression is unfortunate. If we want to claw it
back, we can create a proper storage API to query for the set of
tracked files. I'm not opposed to doing that. But I'm in no hurry
because I suspect ~0 people care about the performance of
`hg manifest --all`.
.. perf::
`hg manifest --all` is likely slower due to changing its
implementation to respect storage interface boundaries. If you
are impacted by this regression in a meaningful way, please make
noise on the development mailing list and it can be dealt with.
Differential Revision: https://phab.mercurial-scm.org/D3119
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Wed, 04 Apr 2018 21:27:02 -0700 |
parents | 4c706037adef |
children | a81d02ea65db |
line wrap: on
line source
# test-batching.py - tests for transparent command batching # # Copyright 2011 Peter Arrenbrecht <peter@arrenbrecht.ch> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import, print_function from mercurial import ( error, peer, util, wireproto, ) # equivalent of repo.repository class thing(object): def hello(self): return "Ready." # equivalent of localrepo.localrepository class localthing(thing): def foo(self, one, two=None): if one: return "%s and %s" % (one, two,) return "Nope" def bar(self, b, a): return "%s und %s" % (b, a,) def greet(self, name=None): return "Hello, %s" % name def batchiter(self): '''Support for local batching.''' return peer.localiterbatcher(self) # usage of "thing" interface def use(it): # Direct call to base method shared between client and server. print(it.hello()) # Direct calls to proxied methods. They cause individual roundtrips. print(it.foo("Un", two="Deux")) print(it.bar("Eins", "Zwei")) # Batched call to a couple of proxied methods. batch = it.batchiter() # The calls return futures to eventually hold results. foo = batch.foo(one="One", two="Two") bar = batch.bar("Eins", "Zwei") bar2 = batch.bar(b="Uno", a="Due") # Future shouldn't be set until we submit(). assert isinstance(foo, peer.future) assert not util.safehasattr(foo, 'value') assert not util.safehasattr(bar, 'value') batch.submit() # Call results() to obtain results as a generator. results = batch.results() # Future results shouldn't be set until we consume a value. assert not util.safehasattr(foo, 'value') foovalue = next(results) assert util.safehasattr(foo, 'value') assert foovalue == foo.value print(foo.value) next(results) print(bar.value) next(results) print(bar2.value) # We should be at the end of the results generator. try: next(results) except StopIteration: print('proper end of results generator') else: print('extra emitted element!') # Attempting to call a non-batchable method inside a batch fails. batch = it.batchiter() try: batch.greet(name='John Smith') except error.ProgrammingError as e: print(e) # Attempting to call a local method inside a batch fails. batch = it.batchiter() try: batch.hello() except error.ProgrammingError as e: print(e) # local usage mylocal = localthing() print() print("== Local") use(mylocal) # demo remoting; mimicks what wireproto and HTTP/SSH do # shared def escapearg(plain): return (plain .replace(':', '::') .replace(',', ':,') .replace(';', ':;') .replace('=', ':=')) def unescapearg(escaped): return (escaped .replace(':=', '=') .replace(':;', ';') .replace(':,', ',') .replace('::', ':')) # server side # equivalent of wireproto's global functions class server(object): def __init__(self, local): self.local = local def _call(self, name, args): args = dict(arg.split('=', 1) for arg in args) return getattr(self, name)(**args) def perform(self, req): print("REQ:", req) name, args = req.split('?', 1) args = args.split('&') vals = dict(arg.split('=', 1) for arg in args) res = getattr(self, name)(**vals) print(" ->", res) return res def batch(self, cmds): res = [] for pair in cmds.split(';'): name, args = pair.split(':', 1) vals = {} for a in args.split(','): if a: n, v = a.split('=') vals[n] = unescapearg(v) res.append(escapearg(getattr(self, name)(**vals))) return ';'.join(res) def foo(self, one, two): return mangle(self.local.foo(unmangle(one), unmangle(two))) def bar(self, b, a): return mangle(self.local.bar(unmangle(b), unmangle(a))) def greet(self, name): return mangle(self.local.greet(unmangle(name))) myserver = server(mylocal) # local side # equivalent of wireproto.encode/decodelist, that is, type-specific marshalling # here we just transform the strings a bit to check we're properly en-/decoding def mangle(s): return ''.join(chr(ord(c) + 1) for c in s) def unmangle(s): return ''.join(chr(ord(c) - 1) for c in s) # equivalent of wireproto.wirerepository and something like http's wire format class remotething(thing): def __init__(self, server): self.server = server def _submitone(self, name, args): req = name + '?' + '&'.join(['%s=%s' % (n, v) for n, v in args]) return self.server.perform(req) def _submitbatch(self, cmds): req = [] for name, args in cmds: args = ','.join(n + '=' + escapearg(v) for n, v in args) req.append(name + ':' + args) req = ';'.join(req) res = self._submitone('batch', [('cmds', req,)]) for r in res.split(';'): yield r def batchiter(self): return wireproto.remoteiterbatcher(self) @peer.batchable def foo(self, one, two=None): encargs = [('one', mangle(one),), ('two', mangle(two),)] encresref = peer.future() yield encargs, encresref yield unmangle(encresref.value) @peer.batchable def bar(self, b, a): encresref = peer.future() yield [('b', mangle(b),), ('a', mangle(a),)], encresref yield unmangle(encresref.value) # greet is coded directly. It therefore does not support batching. If it # does appear in a batch, the batch is split around greet, and the call to # greet is done in its own roundtrip. def greet(self, name=None): return unmangle(self._submitone('greet', [('name', mangle(name),)])) # demo remote usage myproxy = remotething(myserver) print() print("== Remote") use(myproxy)