view mercurial/pvec.py @ 45390:7d24201b6447

worker: don't expose readinto() on _blockingreader since pickle is picky The `pickle` module expects the input to be buffered and a whole object to be available when `pickle.load()` is called, which is not necessarily true when we send data from workers back to the parent process (i.e., it seems like a bad assumption for the `pickle` module to make). We added a workaround for that in https://phab.mercurial-scm.org/D8076, which made `read()` continue until all the requested bytes have been read. As we found out at work after a lot of investigation (I've spent the last two days on this), the native version of `pickle.load()` has started calling `readinto()` on the input since Python 3.8. That started being called in https://github.com/python/cpython/commit/91f4380cedbae32b49adbea2518014a5624c6523 (and only by the C version of `pickle.load()`)). Before that, it was only `read()` and `readline()` that were called. The problem with that was that `readinto()` on our `_blockingreader` was simply delegating to the underlying, *unbuffered* object. The symptom we saw was that `hg fix` started failing sometimes on Python 3.8 on Mac. It failed very relyable in some cases. I still haven't figured out under what circumstances it fails and I've been unable to reproduce it in test cases (I've tried writing larger amounts of data, using different numbers of workers, and making the formatters sleep). I have, however, been able to reproduce it 3-4 times on Linux, but then it stopped reproducing on the following few hundred attempts. To fix the problem, we can simply remove the implementation of `readinto()`, since the unpickler will then fall back to calling `read()`. The fallback was added a bit later, in https://github.com/python/cpython/commit/b19f7ecfa3adc6ba1544225317b9473649815b38. However, that commit also added checking that what `read()` returns is a `bytes`, so we also need to convert the `bytearray` we use into that. I was able to add a test for that failure at least. Differential Revision: https://phab.mercurial-scm.org/D8928
author Martin von Zweigbergk <martinvonz@google.com>
date Fri, 14 Aug 2020 20:45:49 -0700
parents a89aa2d7b34d
children d4ba4d51f85f
line wrap: on
line source

# pvec.py - probabilistic vector clocks for Mercurial
#
# Copyright 2012 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

'''
A "pvec" is a changeset property based on the theory of vector clocks
that can be compared to discover relatedness without consulting a
graph. This can be useful for tasks like determining how a
disconnected patch relates to a repository.

Currently a pvec consist of 448 bits, of which 24 are 'depth' and the
remainder are a bit vector. It is represented as a 70-character base85
string.

Construction:

- a root changeset has a depth of 0 and a bit vector based on its hash
- a normal commit has a changeset where depth is increased by one and
  one bit vector bit is flipped based on its hash
- a merge changeset pvec is constructed by copying changes from one pvec into
  the other to balance its depth

Properties:

- for linear changes, difference in depth is always <= hamming distance
- otherwise, changes are probably divergent
- when hamming distance is < 200, we can reliably detect when pvecs are near

Issues:

- hamming distance ceases to work over distances of ~ 200
- detecting divergence is less accurate when the common ancestor is very close
  to either revision or total distance is high
- this could probably be improved by modeling the relation between
  delta and hdist

Uses:

- a patch pvec can be used to locate the nearest available common ancestor for
  resolving conflicts
- ordering of patches can be established without a DAG
- two head pvecs can be compared to determine whether push/pull/merge is needed
  and approximately how many changesets are involved
- can be used to find a heuristic divergence measure between changesets on
  different branches
'''

from __future__ import absolute_import

from .node import nullrev
from . import (
    pycompat,
    util,
)

_size = 448  # 70 chars b85-encoded
_bytes = _size // 8
_depthbits = 24
_depthbytes = _depthbits // 8
_vecbytes = _bytes - _depthbytes
_vecbits = _vecbytes * 8
_radius = (_vecbits - 30) // 2  # high probability vectors are related


def _bin(bs):
    '''convert a bytestring to a long'''
    v = 0
    for b in bs:
        v = v * 256 + ord(b)
    return v


def _str(v, l):
    # type: (int, int) -> bytes
    bs = b""
    for p in pycompat.xrange(l):
        bs = pycompat.bytechr(v & 255) + bs
        v >>= 8
    return bs


def _split(b):
    '''depth and bitvec'''
    return _bin(b[:_depthbytes]), _bin(b[_depthbytes:])


def _join(depth, bitvec):
    return _str(depth, _depthbytes) + _str(bitvec, _vecbytes)


def _hweight(x):
    c = 0
    while x:
        if x & 1:
            c += 1
        x >>= 1
    return c


_htab = [_hweight(x) for x in pycompat.xrange(256)]


def _hamming(a, b):
    '''find the hamming distance between two longs'''
    d = a ^ b
    c = 0
    while d:
        c += _htab[d & 0xFF]
        d >>= 8
    return c


def _mergevec(x, y, c):
    # Ideally, this function would be x ^ y ^ ancestor, but finding
    # ancestors is a nuisance. So instead we find the minimal number
    # of changes to balance the depth and hamming distance

    d1, v1 = x
    d2, v2 = y
    if d1 < d2:
        d1, d2, v1, v2 = d2, d1, v2, v1

    hdist = _hamming(v1, v2)
    ddist = d1 - d2
    v = v1
    m = v1 ^ v2  # mask of different bits
    i = 1

    if hdist > ddist:
        # if delta = 10 and hdist = 100, then we need to go up 55 steps
        # to the ancestor and down 45
        changes = (hdist - ddist + 1) // 2
    else:
        # must make at least one change
        changes = 1
    depth = d1 + changes

    # copy changes from v2
    if m:
        while changes:
            if m & i:
                v ^= i
                changes -= 1
            i <<= 1
    else:
        v = _flipbit(v, c)

    return depth, v


def _flipbit(v, node):
    # converting bit strings to longs is slow
    bit = (hash(node) & 0xFFFFFFFF) % _vecbits
    return v ^ (1 << bit)


def ctxpvec(ctx):
    '''construct a pvec for ctx while filling in the cache'''
    r = ctx.repo()
    if not util.safehasattr(r, "_pveccache"):
        r._pveccache = {}
    pvc = r._pveccache
    if ctx.rev() not in pvc:
        cl = r.changelog
        for n in pycompat.xrange(ctx.rev() + 1):
            if n not in pvc:
                node = cl.node(n)
                p1, p2 = cl.parentrevs(n)
                if p1 == nullrev:
                    # start with a 'random' vector at root
                    pvc[n] = (0, _bin((node * 3)[:_vecbytes]))
                elif p2 == nullrev:
                    d, v = pvc[p1]
                    pvc[n] = (d + 1, _flipbit(v, node))
                else:
                    pvc[n] = _mergevec(pvc[p1], pvc[p2], node)
    bs = _join(*pvc[ctx.rev()])
    return pvec(util.b85encode(bs))


class pvec(object):
    def __init__(self, hashorctx):
        if isinstance(hashorctx, bytes):
            self._bs = hashorctx
            self._depth, self._vec = _split(util.b85decode(hashorctx))
        else:
            self._vec = ctxpvec(hashorctx)

    def __str__(self):
        return self._bs

    def __eq__(self, b):
        return self._vec == b._vec and self._depth == b._depth

    def __lt__(self, b):
        delta = b._depth - self._depth
        if delta < 0:
            return False  # always correct
        if _hamming(self._vec, b._vec) > delta:
            return False
        return True

    def __gt__(self, b):
        return b < self

    def __or__(self, b):
        delta = abs(b._depth - self._depth)
        if _hamming(self._vec, b._vec) <= delta:
            return False
        return True

    def __sub__(self, b):
        if self | b:
            raise ValueError(b"concurrent pvecs")
        return self._depth - b._depth

    def distance(self, b):
        d = abs(b._depth - self._depth)
        h = _hamming(self._vec, b._vec)
        return max(d, h)

    def near(self, b):
        dist = abs(b.depth - self._depth)
        if dist > _radius or _hamming(self._vec, b._vec) > _radius:
            return False