view mercurial/ancestor.py @ 9485:7d6ac5d7917c

test-gendoc: add tests for all languages This ensures that we catch errors in the reST syntax early and for all languages. The only change needed in gendoc.py was to correct the computation of section underlines for Asian languages.
author Martin Geisler <mg@lazybytes.net>
date Sun, 27 Sep 2009 10:12:02 +0200
parents 23429ebd3f9d
children 806e6b6cb8d8 25e572394f5c
line wrap: on
line source

# ancestor.py - generic DAG ancestor algorithm for mercurial
#
# Copyright 2006 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2, incorporated herein by reference.

import heapq

def ancestor(a, b, pfunc):
    """
    return the least common ancestor of nodes a and b or None if there
    is no such ancestor.

    pfunc must return a list of parent vertices
    """

    if a == b:
        return a

    # find depth from root of all ancestors
    parentcache = {}
    visit = [a, b]
    depth = {}
    while visit:
        vertex = visit[-1]
        pl = pfunc(vertex)
        parentcache[vertex] = pl
        if not pl:
            depth[vertex] = 0
            visit.pop()
        else:
            for p in pl:
                if p == a or p == b: # did we find a or b as a parent?
                    return p # we're done
                if p not in depth:
                    visit.append(p)
            if visit[-1] == vertex:
                depth[vertex] = min([depth[p] for p in pl]) - 1
                visit.pop()

    # traverse ancestors in order of decreasing distance from root
    def ancestors(vertex):
        h = [(depth[vertex], vertex)]
        seen = set()
        while h:
            d, n = heapq.heappop(h)
            if n not in seen:
                seen.add(n)
                yield (d, n)
                for p in parentcache[n]:
                    heapq.heappush(h, (depth[p], p))

    def generations(vertex):
        sg, s = None, set()
        for g, v in ancestors(vertex):
            if g != sg:
                if sg:
                    yield sg, s
                sg, s = g, set((v,))
            else:
                s.add(v)
        yield sg, s

    x = generations(a)
    y = generations(b)
    gx = x.next()
    gy = y.next()

    # increment each ancestor list until it is closer to root than
    # the other, or they match
    try:
        while 1:
            if gx[0] == gy[0]:
                for v in gx[1]:
                    if v in gy[1]:
                        return v
                gy = y.next()
                gx = x.next()
            elif gx[0] > gy[0]:
                gy = y.next()
            else:
                gx = x.next()
    except StopIteration:
        return None