view mercurial/dummycert.pem @ 40026:7e807b8a9e56

wireprotov2: client support for following content redirects And with the server actually sending content redirects, it is finally time to implement client support for following them! When a redirect response is seen, we wait until all data for that request has been received (it should be nearly immediate since no data is expected to follow the redirect message). Then we use a URL opener to make a request. We stuff that response into the client handler and construct a new response object to track it. When readdata() is called for servicing requests, we attempt to read data from the first redirected response. During data reading, data is processed similarly to as if it came from a frame payload. The existing test for the functionality demonstrates the client transparently following the redirect and obtaining the command response data from an alternate URL! There is still plenty of work to do here, including shoring up testing. I'm not convinced things will work in the presence of multiple redirect responses. And we don't yet implement support for integrity verification or configuring server certificates to validate the connection. But it's a start. And it should enable us to start experimenting with "real" caches. Differential Revision: https://phab.mercurial-scm.org/D4778
author Gregory Szorc <gregory.szorc@gmail.com>
date Wed, 26 Sep 2018 18:08:08 -0700
parents d7f7f1860f00
children
line wrap: on
line source

A dummy certificate that will make OS X 10.6+ Python use the system CA
certificate store:

-----BEGIN CERTIFICATE-----
MIIBIzCBzgIJANjmj39sb3FmMA0GCSqGSIb3DQEBBQUAMBkxFzAVBgNVBAMTDmhn
LmV4YW1wbGUuY29tMB4XDTE0MDgzMDA4NDU1OVoXDTE0MDgyOTA4NDU1OVowGTEX
MBUGA1UEAxMOaGcuZXhhbXBsZS5jb20wXDANBgkqhkiG9w0BAQEFAANLADBIAkEA
mh/ZySGlcq0ALNLmA1gZqt61HruywPrRk6WyrLJRgt+X7OP9FFlEfl2tzHfzqvmK
CtSQoPINWOdAJMekBYFgKQIDAQABMA0GCSqGSIb3DQEBBQUAA0EAF9h49LkSqJ6a
IlpogZuUHtihXeKZBsiktVIDlDccYsNy0RSh9XxUfhk+XMLw8jBlYvcltSXdJ7We
aKdQRekuMQ==
-----END CERTIFICATE-----

This certificate was generated to be syntactically valid but never be usable;
it expired before it became valid.

Created as:

  $ cat > cn.conf << EOT
  > [req]
  > distinguished_name = req_distinguished_name
  > [req_distinguished_name]
  > commonName = Common Name
  > commonName_default = no.example.com
  > EOT
  $ openssl req -nodes -new -x509 -keyout /dev/null \
  >   -out dummycert.pem -days -1 -config cn.conf -subj '/CN=hg.example.com'

To verify the content of this certificate:

  $ openssl x509 -in dummycert.pem -noout -text
  Certificate:
      Data:
          Version: 1 (0x0)
          Serial Number: 15629337334278746470 (0xd8e68f7f6c6f7166)
      Signature Algorithm: sha1WithRSAEncryption
          Issuer: CN=hg.example.com
          Validity
              Not Before: Aug 30 08:45:59 2014 GMT
              Not After : Aug 29 08:45:59 2014 GMT
          Subject: CN=hg.example.com
          Subject Public Key Info:
              Public Key Algorithm: rsaEncryption
                  Public-Key: (512 bit)
                  Modulus:
                      00:9a:1f:d9:c9:21:a5:72:ad:00:2c:d2:e6:03:58:
                      19:aa:de:b5:1e:bb:b2:c0:fa:d1:93:a5:b2:ac:b2:
                      51:82:df:97:ec:e3:fd:14:59:44:7e:5d:ad:cc:77:
                      f3:aa:f9:8a:0a:d4:90:a0:f2:0d:58:e7:40:24:c7:
                      a4:05:81:60:29
                  Exponent: 65537 (0x10001)
      Signature Algorithm: sha1WithRSAEncryption
           17:d8:78:f4:b9:12:a8:9e:9a:22:5a:68:81:9b:94:1e:d8:a1:
           5d:e2:99:06:c8:a4:b5:52:03:94:37:1c:62:c3:72:d1:14:a1:
           f5:7c:54:7e:19:3e:5c:c2:f0:f2:30:65:62:f7:25:b5:25:dd:
           27:b5:9e:68:a7:50:45:e9:2e:31