Mercurial > hg
view mercurial/similar.py @ 40026:7e807b8a9e56
wireprotov2: client support for following content redirects
And with the server actually sending content redirects, it is finally
time to implement client support for following them!
When a redirect response is seen, we wait until all data for that
request has been received (it should be nearly immediate since no
data is expected to follow the redirect message). Then we use
a URL opener to make a request. We stuff that response into the
client handler and construct a new response object to track it.
When readdata() is called for servicing requests, we attempt to
read data from the first redirected response. During data reading,
data is processed similarly to as if it came from a frame payload.
The existing test for the functionality demonstrates the client
transparently following the redirect and obtaining the command
response data from an alternate URL!
There is still plenty of work to do here, including shoring up
testing. I'm not convinced things will work in the presence of
multiple redirect responses. And we don't yet implement support
for integrity verification or configuring server certificates
to validate the connection. But it's a start. And it should enable
us to start experimenting with "real" caches.
Differential Revision: https://phab.mercurial-scm.org/D4778
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Wed, 26 Sep 2018 18:08:08 -0700 |
parents | 59c9d3cc810f |
children | 2372284d9457 |
line wrap: on
line source
# similar.py - mechanisms for finding similar files # # Copyright 2005-2007 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import from .i18n import _ from . import ( mdiff, ) def _findexactmatches(repo, added, removed): '''find renamed files that have no changes Takes a list of new filectxs and a list of removed filectxs, and yields (before, after) tuples of exact matches. ''' # Build table of removed files: {hash(fctx.data()): [fctx, ...]}. # We use hash() to discard fctx.data() from memory. hashes = {} progress = repo.ui.makeprogress(_('searching for exact renames'), total=(len(added) + len(removed)), unit=_('files')) for fctx in removed: progress.increment() h = hash(fctx.data()) if h not in hashes: hashes[h] = [fctx] else: hashes[h].append(fctx) # For each added file, see if it corresponds to a removed file. for fctx in added: progress.increment() adata = fctx.data() h = hash(adata) for rfctx in hashes.get(h, []): # compare between actual file contents for exact identity if adata == rfctx.data(): yield (rfctx, fctx) break # Done progress.complete() def _ctxdata(fctx): # lazily load text orig = fctx.data() return orig, mdiff.splitnewlines(orig) def _score(fctx, otherdata): orig, lines = otherdata text = fctx.data() # mdiff.blocks() returns blocks of matching lines # count the number of bytes in each equal = 0 matches = mdiff.blocks(text, orig) for x1, x2, y1, y2 in matches: for line in lines[y1:y2]: equal += len(line) lengths = len(text) + len(orig) return equal * 2.0 / lengths def score(fctx1, fctx2): return _score(fctx1, _ctxdata(fctx2)) def _findsimilarmatches(repo, added, removed, threshold): '''find potentially renamed files based on similar file content Takes a list of new filectxs and a list of removed filectxs, and yields (before, after, score) tuples of partial matches. ''' copies = {} progress = repo.ui.makeprogress(_('searching for similar files'), unit=_('files'), total=len(removed)) for r in removed: progress.increment() data = None for a in added: bestscore = copies.get(a, (None, threshold))[1] if data is None: data = _ctxdata(r) myscore = _score(a, data) if myscore > bestscore: copies[a] = (r, myscore) progress.complete() for dest, v in copies.iteritems(): source, bscore = v yield source, dest, bscore def _dropempty(fctxs): return [x for x in fctxs if x.size() > 0] def findrenames(repo, added, removed, threshold): '''find renamed files -- yields (before, after, score) tuples''' wctx = repo[None] pctx = wctx.p1() # Zero length files will be frequently unrelated to each other, and # tracking the deletion/addition of such a file will probably cause more # harm than good. We strip them out here to avoid matching them later on. addedfiles = _dropempty(wctx[fp] for fp in sorted(added)) removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx) # Find exact matches. matchedfiles = set() for (a, b) in _findexactmatches(repo, addedfiles, removedfiles): matchedfiles.add(b) yield (a.path(), b.path(), 1.0) # If the user requested similar files to be matched, search for them also. if threshold < 1.0: addedfiles = [x for x in addedfiles if x not in matchedfiles] for (a, b, score) in _findsimilarmatches(repo, addedfiles, removedfiles, threshold): yield (a.path(), b.path(), score)