Mercurial > hg
view tests/test-batching.py @ 17922:7f5dab94e48c
bookmarks: introduce a bmstore to manage bookmark persistence
Bookmarks persistence still showed a fair amount of its legacy as a
monkeypatching extension. This encapsulates all bookmarks
serialization and parsing in a single class, and offers a single
location where other bookmarks storage engines can be substituted
in. As a result, many files no longer import the bookmarks module,
which strikes me as an encapsulation win.
This doesn't do anything to the current bookmark state yet, but I'm
hoping put that in the bmstore class as well.
author | Augie Fackler <raf@durin42.com> |
---|---|
date | Wed, 07 Nov 2012 16:21:39 -0600 |
parents | a7d5816087a9 |
children | cbbdd085c991 |
line wrap: on
line source
# test-batching.py - tests for transparent command batching # # Copyright 2011 Peter Arrenbrecht <peter@arrenbrecht.ch> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from mercurial.wireproto import localbatch, remotebatch, batchable, future # equivalent of repo.repository class thing(object): def hello(self): return "Ready." # equivalent of localrepo.localrepository class localthing(thing): def foo(self, one, two=None): if one: return "%s and %s" % (one, two,) return "Nope" def bar(self, b, a): return "%s und %s" % (b, a,) def greet(self, name=None): return "Hello, %s" % name def batch(self): '''Support for local batching.''' return localbatch(self) # usage of "thing" interface def use(it): # Direct call to base method shared between client and server. print it.hello() # Direct calls to proxied methods. They cause individual roundtrips. print it.foo("Un", two="Deux") print it.bar("Eins", "Zwei") # Batched call to a couple of (possibly proxied) methods. batch = it.batch() # The calls return futures to eventually hold results. foo = batch.foo(one="One", two="Two") foo2 = batch.foo(None) bar = batch.bar("Eins", "Zwei") # We can call non-batchable proxy methods, but the break the current batch # request and cause additional roundtrips. greet = batch.greet(name="John Smith") # We can also add local methods into the mix, but they break the batch too. hello = batch.hello() bar2 = batch.bar(b="Uno", a="Due") # Only now are all the calls executed in sequence, with as few roundtrips # as possible. batch.submit() # After the call to submit, the futures actually contain values. print foo.value print foo2.value print bar.value print greet.value print hello.value print bar2.value # local usage mylocal = localthing() print print "== Local" use(mylocal) # demo remoting; mimicks what wireproto and HTTP/SSH do # shared def escapearg(plain): return (plain .replace(':', '::') .replace(',', ':,') .replace(';', ':;') .replace('=', ':=')) def unescapearg(escaped): return (escaped .replace(':=', '=') .replace(':;', ';') .replace(':,', ',') .replace('::', ':')) # server side # equivalent of wireproto's global functions class server(object): def __init__(self, local): self.local = local def _call(self, name, args): args = dict(arg.split('=', 1) for arg in args) return getattr(self, name)(**args) def perform(self, req): print "REQ:", req name, args = req.split('?', 1) args = args.split('&') vals = dict(arg.split('=', 1) for arg in args) res = getattr(self, name)(**vals) print " ->", res return res def batch(self, cmds): res = [] for pair in cmds.split(';'): name, args = pair.split(':', 1) vals = {} for a in args.split(','): if a: n, v = a.split('=') vals[n] = unescapearg(v) res.append(escapearg(getattr(self, name)(**vals))) return ';'.join(res) def foo(self, one, two): return mangle(self.local.foo(unmangle(one), unmangle(two))) def bar(self, b, a): return mangle(self.local.bar(unmangle(b), unmangle(a))) def greet(self, name): return mangle(self.local.greet(unmangle(name))) myserver = server(mylocal) # local side # equivalent of wireproto.encode/decodelist, that is, type-specific marshalling # here we just transform the strings a bit to check we're properly en-/decoding def mangle(s): return ''.join(chr(ord(c) + 1) for c in s) def unmangle(s): return ''.join(chr(ord(c) - 1) for c in s) # equivalent of wireproto.wirerepository and something like http's wire format class remotething(thing): def __init__(self, server): self.server = server def _submitone(self, name, args): req = name + '?' + '&'.join(['%s=%s' % (n, v) for n, v in args]) return self.server.perform(req) def _submitbatch(self, cmds): req = [] for name, args in cmds: args = ','.join(n + '=' + escapearg(v) for n, v in args) req.append(name + ':' + args) req = ';'.join(req) res = self._submitone('batch', [('cmds', req,)]) return res.split(';') def batch(self): return remotebatch(self) @batchable def foo(self, one, two=None): if not one: yield "Nope", None encargs = [('one', mangle(one),), ('two', mangle(two),)] encresref = future() yield encargs, encresref yield unmangle(encresref.value) @batchable def bar(self, b, a): encresref = future() yield [('b', mangle(b),), ('a', mangle(a),)], encresref yield unmangle(encresref.value) # greet is coded directly. It therefore does not support batching. If it # does appear in a batch, the batch is split around greet, and the call to # greet is done in its own roundtrip. def greet(self, name=None): return unmangle(self._submitone('greet', [('name', mangle(name),)])) # demo remote usage myproxy = remotething(myserver) print print "== Remote" use(myproxy)