view mercurial/similar.py @ 13751:85d74f6babf6

patch: deprecate ui.patch / external patcher feature Why? - Mercurial internal patcher works correctly for regular patches and git patches, is much faster at least on Windows and is more extensible. - In theory, the external patcher can be used to handle exotic patch formats. I do not know any and have not heard about any such use in years. - Most patch programs cannot handle git format patches, which makes the API caller to decide either to ignore ui.patch by calling patch.internalpatch() directly, or take the risk of random failures with valid inputs. - One thing a patch program could do Mercurial patcher cannot is applying with --reverse. Apparently several shelve like extensions try to use that, including passing the "reverse" option to Mercurial patcher, which has been removed mid-2009. I never heard anybody complain about that, and would prefer reimplementing it anyway. And from the technical perspective: - The external patcher makes everything harder to maintain and implement. EOL normalization is not implemented, and I would bet file renames, if supported by the patcher, are not correctly recorded in the dirstate. - No tests. How? - Remove related documentation - Clearly mark patch.externalpatch() as private - Remove the debuginstall check. This deprecation request was actually triggered by this last point. debuginstall is the only piece of code patching without a repository. When migrating to an integrated patch() + updatedir() call, this was really a showstopper, all workarounds were either ugly or uselessly complicated to implement. If we do not support external patcher anymore, the debuginstall check is not useful anymore. - Remove patch.externalpatch() after 1.9 release.
author Patrick Mezard <pmezard@gmail.com>
date Thu, 24 Mar 2011 10:28:29 +0100
parents 0c8646292ca4
children 525fdb738975
line wrap: on
line source

# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from i18n import _
import util
import mdiff
import bdiff

def _findexactmatches(repo, added, removed):
    '''find renamed files that have no changes

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after) tuples of exact matches.
    '''
    numfiles = len(added) + len(removed)

    # Get hashes of removed files.
    hashes = {}
    for i, fctx in enumerate(removed):
        repo.ui.progress(_('searching for exact renames'), i, total=numfiles)
        h = util.sha1(fctx.data()).digest()
        hashes[h] = fctx

    # For each added file, see if it corresponds to a removed file.
    for i, fctx in enumerate(added):
        repo.ui.progress(_('searching for exact renames'), i + len(removed),
                total=numfiles)
        h = util.sha1(fctx.data()).digest()
        if h in hashes:
            yield (hashes[h], fctx)

    # Done
    repo.ui.progress(_('searching for exact renames'), None)

def _findsimilarmatches(repo, added, removed, threshold):
    '''find potentially renamed files based on similar file content

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after, score) tuples of partial matches.
    '''
    copies = {}
    for i, r in enumerate(removed):
        repo.ui.progress(_('searching for similar files'), i, total=len(removed))

        # lazily load text
        @util.cachefunc
        def data():
            orig = r.data()
            return orig, mdiff.splitnewlines(orig)

        def score(text):
            orig, lines = data()
            # bdiff.blocks() returns blocks of matching lines
            # count the number of bytes in each
            equal = 0
            matches = bdiff.blocks(text, orig)
            for x1, x2, y1, y2 in matches:
                for line in lines[y1:y2]:
                    equal += len(line)

            lengths = len(text) + len(orig)
            return equal * 2.0 / lengths

        for a in added:
            bestscore = copies.get(a, (None, threshold))[1]
            myscore = score(a.data())
            if myscore >= bestscore:
                copies[a] = (r, myscore)
    repo.ui.progress(_('searching'), None)

    for dest, v in copies.iteritems():
        source, score = v
        yield source, dest, score

def findrenames(repo, added, removed, threshold):
    '''find renamed files -- yields (before, after, score) tuples'''
    parentctx = repo['.']
    workingctx = repo[None]

    # Zero length files will be frequently unrelated to each other, and
    # tracking the deletion/addition of such a file will probably cause more
    # harm than good. We strip them out here to avoid matching them later on.
    addedfiles = set([workingctx[fp] for fp in added
            if workingctx[fp].size() > 0])
    removedfiles = set([parentctx[fp] for fp in removed
            if fp in parentctx and parentctx[fp].size() > 0])

    # Find exact matches.
    for (a, b) in _findexactmatches(repo,
            sorted(addedfiles), sorted(removedfiles)):
        addedfiles.remove(b)
        yield (a.path(), b.path(), 1.0)

    # If the user requested similar files to be matched, search for them also.
    if threshold < 1.0:
        for (a, b, score) in _findsimilarmatches(repo,
                sorted(addedfiles), sorted(removedfiles), threshold):
            yield (a.path(), b.path(), score)