view tests/generate-working-copy-states.py @ 42278:8dc22a209420

automation: wait for instance profiles and roles Otherwise there is a race condition between creating the resources and us attempting to use them / them becoming available. The role waiter API was recently introduced, so we had to upgrade the boto3 package to get it. Other packages were also updated to latest versions just because. Even with this change, I still run into issues with the IAM instance profile not being available when we attempt to create an EC2 instance using a just-created profile. I'm not sure what's going on. Possibly a bug on Amazon's end. But the new behavior is "more correct." Differential Revision: https://phab.mercurial-scm.org/D6286
author Gregory Szorc <gregory.szorc@gmail.com>
date Sat, 27 Apr 2019 11:38:58 -0700
parents ed46d48453e8
children 2372284d9457
line wrap: on
line source

# Helper script used for generating history and working copy files and content.
# The file's name corresponds to its history. The number of changesets can
# be specified on the command line. With 2 changesets, files with names like
# content1_content2_content1-untracked are generated. The first two filename
# segments describe the contents in the two changesets. The third segment
# ("content1-untracked") describes the state in the working copy, i.e.
# the file has content "content1" and is untracked (since it was previously
# tracked, it has been forgotten).
#
# This script generates the filenames and their content, but it's up to the
# caller to tell hg about the state.
#
# There are two subcommands:
#   filelist <numchangesets>
#   state <numchangesets> (<changeset>|wc)
#
# Typical usage:
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'first'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'second'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 wc
# $ hg addremove --similarity 0
# $ hg forget *_*_*-untracked
# $ rm *_*_missing-*

from __future__ import absolute_import, print_function

import os
import sys

# Generates pairs of (filename, contents), where 'contents' is a list
# describing the file's content at each revision (or in the working copy).
# At each revision, it is either None or the file's actual content. When not
# None, it may be either new content or the same content as an earlier
# revisions, so all of (modified,clean,added,removed) can be tested.
def generatestates(maxchangesets, parentcontents):
    depth = len(parentcontents)
    if depth == maxchangesets + 1:
        for tracked in (b'untracked', b'tracked'):
            filename = b"_".join([(content is None and b'missing' or content)
                                for content in parentcontents]) + b"-" + tracked
            yield (filename, parentcontents)
    else:
        for content in ({None, b'content' + (b"%d" % (depth + 1))} |
                      set(parentcontents)):
            for combination in generatestates(maxchangesets,
                                              parentcontents + [content]):
                yield combination

# retrieve the command line arguments
target = sys.argv[1]
maxchangesets = int(sys.argv[2])
if target == 'state':
    depth = sys.argv[3]

# sort to make sure we have stable output
combinations = sorted(generatestates(maxchangesets, []))

# compute file content
content = []
for filename, states in combinations:
    if target == 'filelist':
        print(filename.decode('ascii'))
    elif target == 'state':
        if depth == 'wc':
            # Make sure there is content so the file gets written and can be
            # tracked. It will be deleted outside of this script.
            content.append((filename, states[maxchangesets] or b'TOBEDELETED'))
        else:
            content.append((filename, states[int(depth) - 1]))
    else:
        print("unknown target:", target, file=sys.stderr)
        sys.exit(1)

# write actual content
for filename, data in content:
    if data is not None:
        f = open(filename, 'wb')
        f.write(data + b'\n')
        f.close()
    elif os.path.exists(filename):
        os.remove(filename)