Mercurial > hg
view mercurial/filesetlang.py @ 45095:8e04607023e5
procutil: ensure that procutil.std{out,err}.write() writes all bytes
Python 3 offers different kind of streams and it’s not guaranteed for all of
them that calling write() writes all bytes.
When Python is started in unbuffered mode, sys.std{out,err}.buffer are
instances of io.FileIO, whose write() can write less bytes for
platform-specific reasons (e.g. Linux has a 0x7ffff000 bytes maximum and could
write less if interrupted by a signal; when writing to Windows consoles, it’s
limited to 32767 bytes to avoid the "not enough space" error). This can lead to
silent loss of data, both when using sys.std{out,err}.buffer (which may in fact
not be a buffered stream) and when using the text streams sys.std{out,err}
(I’ve created a CPython bug report for that:
https://bugs.python.org/issue41221).
Python may fix the problem at some point. For now, we implement our own wrapper
for procutil.std{out,err} that calls the raw stream’s write() method until all
bytes have been written. We don’t use sys.std{out,err} for larger writes, so I
think it’s not worth the effort to patch them.
author | Manuel Jacob <me@manueljacob.de> |
---|---|
date | Fri, 10 Jul 2020 12:27:58 +0200 |
parents | c59eb1560c44 |
children | d4ba4d51f85f |
line wrap: on
line source
# filesetlang.py - parser, tokenizer and utility for file set language # # Copyright 2010 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import from .i18n import _ from .pycompat import getattr from . import ( error, parser, pycompat, ) # common weight constants for static optimization # (see registrar.filesetpredicate for details) WEIGHT_CHECK_FILENAME = 0.5 WEIGHT_READ_CONTENTS = 30 WEIGHT_STATUS = 10 WEIGHT_STATUS_THOROUGH = 50 elements = { # token-type: binding-strength, primary, prefix, infix, suffix b"(": (20, None, (b"group", 1, b")"), (b"func", 1, b")"), None), b":": (15, None, None, (b"kindpat", 15), None), b"-": (5, None, (b"negate", 19), (b"minus", 5), None), b"not": (10, None, (b"not", 10), None, None), b"!": (10, None, (b"not", 10), None, None), b"and": (5, None, None, (b"and", 5), None), b"&": (5, None, None, (b"and", 5), None), b"or": (4, None, None, (b"or", 4), None), b"|": (4, None, None, (b"or", 4), None), b"+": (4, None, None, (b"or", 4), None), b",": (2, None, None, (b"list", 2), None), b")": (0, None, None, None, None), b"symbol": (0, b"symbol", None, None, None), b"string": (0, b"string", None, None, None), b"end": (0, None, None, None, None), } keywords = {b'and', b'or', b'not'} symbols = {} globchars = b".*{}[]?/\\_" def tokenize(program): pos, l = 0, len(program) program = pycompat.bytestr(program) while pos < l: c = program[pos] if c.isspace(): # skip inter-token whitespace pass elif c in b"(),-:|&+!": # handle simple operators yield (c, None, pos) elif ( c in b'"\'' or c == b'r' and program[pos : pos + 2] in (b"r'", b'r"') ): # handle quoted strings if c == b'r': pos += 1 c = program[pos] decode = lambda x: x else: decode = parser.unescapestr pos += 1 s = pos while pos < l: # find closing quote d = program[pos] if d == b'\\': # skip over escaped characters pos += 2 continue if d == c: yield (b'string', decode(program[s:pos]), s) break pos += 1 else: raise error.ParseError(_(b"unterminated string"), s) elif c.isalnum() or c in globchars or ord(c) > 127: # gather up a symbol/keyword s = pos pos += 1 while pos < l: # find end of symbol d = program[pos] if not (d.isalnum() or d in globchars or ord(d) > 127): break pos += 1 sym = program[s:pos] if sym in keywords: # operator keywords yield (sym, None, s) else: yield (b'symbol', sym, s) pos -= 1 else: raise error.ParseError(_(b"syntax error"), pos) pos += 1 yield (b'end', None, pos) def parse(expr): p = parser.parser(elements) tree, pos = p.parse(tokenize(expr)) if pos != len(expr): raise error.ParseError(_(b"invalid token"), pos) return parser.simplifyinfixops(tree, {b'list', b'or'}) def getsymbol(x): if x and x[0] == b'symbol': return x[1] raise error.ParseError(_(b'not a symbol')) def getstring(x, err): if x and (x[0] == b'string' or x[0] == b'symbol'): return x[1] raise error.ParseError(err) def getkindpat(x, y, allkinds, err): kind = getsymbol(x) pat = getstring(y, err) if kind not in allkinds: raise error.ParseError(_(b"invalid pattern kind: %s") % kind) return b'%s:%s' % (kind, pat) def getpattern(x, allkinds, err): if x and x[0] == b'kindpat': return getkindpat(x[1], x[2], allkinds, err) return getstring(x, err) def getlist(x): if not x: return [] if x[0] == b'list': return list(x[1:]) return [x] def getargs(x, min, max, err): l = getlist(x) if len(l) < min or len(l) > max: raise error.ParseError(err) return l def _analyze(x): if x is None: return x op = x[0] if op in {b'string', b'symbol'}: return x if op == b'kindpat': getsymbol(x[1]) # kind must be a symbol t = _analyze(x[2]) return (op, x[1], t) if op == b'group': return _analyze(x[1]) if op == b'negate': raise error.ParseError(_(b"can't use negate operator in this context")) if op == b'not': t = _analyze(x[1]) return (op, t) if op == b'and': ta = _analyze(x[1]) tb = _analyze(x[2]) return (op, ta, tb) if op == b'minus': return _analyze((b'and', x[1], (b'not', x[2]))) if op in {b'list', b'or'}: ts = tuple(_analyze(y) for y in x[1:]) return (op,) + ts if op == b'func': getsymbol(x[1]) # function name must be a symbol ta = _analyze(x[2]) return (op, x[1], ta) raise error.ProgrammingError(b'invalid operator %r' % op) def _insertstatushints(x): """Insert hint nodes where status should be calculated (first path) This works in bottom-up way, summing up status names and inserting hint nodes at 'and' and 'or' as needed. Thus redundant hint nodes may be left. Returns (status-names, new-tree) at the given subtree, where status-names is a sum of status names referenced in the given subtree. """ if x is None: return (), x op = x[0] if op in {b'string', b'symbol', b'kindpat'}: return (), x if op == b'not': h, t = _insertstatushints(x[1]) return h, (op, t) if op == b'and': ha, ta = _insertstatushints(x[1]) hb, tb = _insertstatushints(x[2]) hr = ha + hb if ha and hb: return hr, (b'withstatus', (op, ta, tb), (b'string', b' '.join(hr))) return hr, (op, ta, tb) if op == b'or': hs, ts = zip(*(_insertstatushints(y) for y in x[1:])) hr = sum(hs, ()) if sum(bool(h) for h in hs) > 1: return hr, (b'withstatus', (op,) + ts, (b'string', b' '.join(hr))) return hr, (op,) + ts if op == b'list': hs, ts = zip(*(_insertstatushints(y) for y in x[1:])) return sum(hs, ()), (op,) + ts if op == b'func': f = getsymbol(x[1]) # don't propagate 'ha' crossing a function boundary ha, ta = _insertstatushints(x[2]) if getattr(symbols.get(f), '_callstatus', False): return (f,), (b'withstatus', (op, x[1], ta), (b'string', f)) return (), (op, x[1], ta) raise error.ProgrammingError(b'invalid operator %r' % op) def _mergestatushints(x, instatus): """Remove redundant status hint nodes (second path) This is the top-down path to eliminate inner hint nodes. """ if x is None: return x op = x[0] if op == b'withstatus': if instatus: # drop redundant hint node return _mergestatushints(x[1], instatus) t = _mergestatushints(x[1], instatus=True) return (op, t, x[2]) if op in {b'string', b'symbol', b'kindpat'}: return x if op == b'not': t = _mergestatushints(x[1], instatus) return (op, t) if op == b'and': ta = _mergestatushints(x[1], instatus) tb = _mergestatushints(x[2], instatus) return (op, ta, tb) if op in {b'list', b'or'}: ts = tuple(_mergestatushints(y, instatus) for y in x[1:]) return (op,) + ts if op == b'func': # don't propagate 'instatus' crossing a function boundary ta = _mergestatushints(x[2], instatus=False) return (op, x[1], ta) raise error.ProgrammingError(b'invalid operator %r' % op) def analyze(x): """Transform raw parsed tree to evaluatable tree which can be fed to optimize() or getmatch() All pseudo operations should be mapped to real operations or functions defined in methods or symbols table respectively. """ t = _analyze(x) _h, t = _insertstatushints(t) return _mergestatushints(t, instatus=False) def _optimizeandops(op, ta, tb): if tb is not None and tb[0] == b'not': return (b'minus', ta, tb[1]) return (op, ta, tb) def _optimizeunion(xs): # collect string patterns so they can be compiled into a single regexp ws, ts, ss = [], [], [] for x in xs: w, t = _optimize(x) if t is not None and t[0] in {b'string', b'symbol', b'kindpat'}: ss.append(t) continue ws.append(w) ts.append(t) if ss: ws.append(WEIGHT_CHECK_FILENAME) ts.append((b'patterns',) + tuple(ss)) return ws, ts def _optimize(x): if x is None: return 0, x op = x[0] if op == b'withstatus': w, t = _optimize(x[1]) return w, (op, t, x[2]) if op in {b'string', b'symbol'}: return WEIGHT_CHECK_FILENAME, x if op == b'kindpat': w, t = _optimize(x[2]) return w, (op, x[1], t) if op == b'not': w, t = _optimize(x[1]) return w, (op, t) if op == b'and': wa, ta = _optimize(x[1]) wb, tb = _optimize(x[2]) if wa <= wb: return wa, _optimizeandops(op, ta, tb) else: return wb, _optimizeandops(op, tb, ta) if op == b'or': ws, ts = _optimizeunion(x[1:]) if len(ts) == 1: return ws[0], ts[0] # 'or' operation is fully optimized out ts = tuple( it[1] for it in sorted(enumerate(ts), key=lambda it: ws[it[0]]) ) return max(ws), (op,) + ts if op == b'list': ws, ts = zip(*(_optimize(y) for y in x[1:])) return sum(ws), (op,) + ts if op == b'func': f = getsymbol(x[1]) w = getattr(symbols.get(f), '_weight', 1) wa, ta = _optimize(x[2]) return w + wa, (op, x[1], ta) raise error.ProgrammingError(b'invalid operator %r' % op) def optimize(x): """Reorder/rewrite evaluatable tree for optimization All pseudo operations should be transformed beforehand. """ _w, t = _optimize(x) return t def prettyformat(tree): return parser.prettyformat(tree, (b'string', b'symbol'))