view tests/test-ancestor.py @ 31619:91ddb33deea5

rebase: move state serialization to use unfiltered repo Now that rebasestate is serialized as part of the transaction, the repo state it sees is the version at the end of the transaction, which may have hidden nodes. Therefore, it's possible parts of the rebase commit set are no longer visible by the time the transaction is closing, which causes a filtered revision error in this code. I don't think state serialization should be blocked from accessing commits it knows exist, especially if all it's trying to do is get the hex of them, so let's use an unfiltered repo here. Unfortunately, the only known repro is with the fbamend Facebook extension, so I'm not sure how to repro it in core Mercurial for a test.
author Durham Goode <durham@fb.com>
date Sun, 12 Mar 2017 12:33:35 -0700
parents d83ca854fa21
children bd872f64a8ba
line wrap: on
line source

from __future__ import absolute_import, print_function

import binascii
import getopt
import math
import os
import random
import sys
import time

from mercurial.node import nullrev
from mercurial import (
    ancestor,
    debugcommands,
    hg,
    ui as uimod,
    util,
)

def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7):
    '''nodes: total number of nodes in the graph
    rootprob: probability that a new node (not 0) will be a root
    mergeprob: probability that, excluding a root a node will be a merge
    prevprob: probability that p1 will be the previous node

    return value is a graph represented as an adjacency list.
    '''
    graph = [None] * nodes
    for i in xrange(nodes):
        if i == 0 or rng.random() < rootprob:
            graph[i] = [nullrev]
        elif i == 1:
            graph[i] = [0]
        elif rng.random() < mergeprob:
            if i == 2 or rng.random() < prevprob:
                # p1 is prev
                p1 = i - 1
            else:
                p1 = rng.randrange(i - 1)
            p2 = rng.choice(range(0, p1) + range(p1 + 1, i))
            graph[i] = [p1, p2]
        elif rng.random() < prevprob:
            graph[i] = [i - 1]
        else:
            graph[i] = [rng.randrange(i - 1)]

    return graph

def buildancestorsets(graph):
    ancs = [None] * len(graph)
    for i in xrange(len(graph)):
        ancs[i] = set([i])
        if graph[i] == [nullrev]:
            continue
        for p in graph[i]:
            ancs[i].update(ancs[p])
    return ancs

class naiveincrementalmissingancestors(object):
    def __init__(self, ancs, bases):
        self.ancs = ancs
        self.bases = set(bases)
    def addbases(self, newbases):
        self.bases.update(newbases)
    def removeancestorsfrom(self, revs):
        for base in self.bases:
            if base != nullrev:
                revs.difference_update(self.ancs[base])
        revs.discard(nullrev)
    def missingancestors(self, revs):
        res = set()
        for rev in revs:
            if rev != nullrev:
                res.update(self.ancs[rev])
        for base in self.bases:
            if base != nullrev:
                res.difference_update(self.ancs[base])
        return sorted(res)

def test_missingancestors(seed, rng):
    # empirically observed to take around 1 second
    graphcount = 100
    testcount = 10
    inccount = 10
    nerrs = [0]
    # the default mu and sigma give us a nice distribution of mostly
    # single-digit counts (including 0) with some higher ones
    def lognormrandom(mu, sigma):
        return int(math.floor(rng.lognormvariate(mu, sigma)))

    def samplerevs(nodes, mu=1.1, sigma=0.8):
        count = min(lognormrandom(mu, sigma), len(nodes))
        return rng.sample(nodes, count)

    def err(seed, graph, bases, seq, output, expected):
        if nerrs[0] == 0:
            print('seed:', hex(seed)[:-1], file=sys.stderr)
        if gerrs[0] == 0:
            print('graph:', graph, file=sys.stderr)
        print('* bases:', bases, file=sys.stderr)
        print('* seq: ', seq, file=sys.stderr)
        print('*  output:  ', output, file=sys.stderr)
        print('*  expected:', expected, file=sys.stderr)
        nerrs[0] += 1
        gerrs[0] += 1

    for g in xrange(graphcount):
        graph = buildgraph(rng)
        ancs = buildancestorsets(graph)
        gerrs = [0]
        for _ in xrange(testcount):
            # start from nullrev to include it as a possibility
            graphnodes = range(nullrev, len(graph))
            bases = samplerevs(graphnodes)

            # fast algorithm
            inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases)
            # reference slow algorithm
            naiveinc = naiveincrementalmissingancestors(ancs, bases)
            seq = []
            revs = []
            for _ in xrange(inccount):
                if rng.random() < 0.2:
                    newbases = samplerevs(graphnodes)
                    seq.append(('addbases', newbases))
                    inc.addbases(newbases)
                    naiveinc.addbases(newbases)
                if rng.random() < 0.4:
                    # larger set so that there are more revs to remove from
                    revs = samplerevs(graphnodes, mu=1.5)
                    seq.append(('removeancestorsfrom', revs))
                    hrevs = set(revs)
                    rrevs = set(revs)
                    inc.removeancestorsfrom(hrevs)
                    naiveinc.removeancestorsfrom(rrevs)
                    if hrevs != rrevs:
                        err(seed, graph, bases, seq, sorted(hrevs),
                            sorted(rrevs))
                else:
                    revs = samplerevs(graphnodes)
                    seq.append(('missingancestors', revs))
                    h = inc.missingancestors(revs)
                    r = naiveinc.missingancestors(revs)
                    if h != r:
                        err(seed, graph, bases, seq, h, r)

# graph is a dict of child->parent adjacency lists for this graph:
# o  13
# |
# | o  12
# | |
# | | o    11
# | | |\
# | | | | o  10
# | | | | |
# | o---+ |  9
# | | | | |
# o | | | |  8
#  / / / /
# | | o |  7
# | | | |
# o---+ |  6
#  / / /
# | | o  5
# | |/
# | o  4
# | |
# o |  3
# | |
# | o  2
# |/
# o  1
# |
# o  0

graph = {0: [-1], 1: [0], 2: [1], 3: [1], 4: [2], 5: [4], 6: [4],
         7: [4], 8: [-1], 9: [6, 7], 10: [5], 11: [3, 7], 12: [9],
         13: [8]}

def genlazyancestors(revs, stoprev=0, inclusive=False):
    print(("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" %
           (revs, stoprev, inclusive)))
    return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev,
                                  inclusive=inclusive)

def printlazyancestors(s, l):
    print('membership: %r' % [n for n in l if n in s])
    print('iteration:  %r' % list(s))

def test_lazyancestors():
    # Empty revs
    s = genlazyancestors([])
    printlazyancestors(s, [3, 0, -1])

    # Standard example
    s = genlazyancestors([11, 13])
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Standard with ancestry in the initial set (1 is ancestor of 3)
    s = genlazyancestors([1, 3])
    printlazyancestors(s, [1, -1, 0])

    # Including revs
    s = genlazyancestors([11, 13], inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Test with stoprev
    s = genlazyancestors([11, 13], stoprev=6)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
    s = genlazyancestors([11, 13], stoprev=6, inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])


# The C gca algorithm requires a real repo. These are textual descriptions of
# DAGs that have been known to be problematic.
dagtests = [
    '+2*2*2/*3/2',
    '+3*3/*2*2/*4*4/*4/2*4/2*2',
]
def test_gca():
    u = uimod.ui.load()
    for i, dag in enumerate(dagtests):
        repo = hg.repository(u, 'gca%d' % i, create=1)
        cl = repo.changelog
        if not util.safehasattr(cl.index, 'ancestors'):
            # C version not available
            return

        debugcommands.debugbuilddag(u, repo, dag)
        # Compare the results of the Python and C versions. This does not
        # include choosing a winner when more than one gca exists -- we make
        # sure both return exactly the same set of gcas.
        for a in cl:
            for b in cl:
                cgcas = sorted(cl.index.ancestors(a, b))
                pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b))
                if cgcas != pygcas:
                    print("test_gca: for dag %s, gcas for %d, %d:"
                          % (dag, a, b))
                    print("  C returned:      %s" % cgcas)
                    print("  Python returned: %s" % pygcas)

def main():
    seed = None
    opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed='])
    for o, a in opts:
        if o in ('-s', '--seed'):
            seed = long(a, base=0) # accepts base 10 or 16 strings

    if seed is None:
        try:
            seed = long(binascii.hexlify(os.urandom(16)), 16)
        except AttributeError:
            seed = long(time.time() * 1000)

    rng = random.Random(seed)
    test_missingancestors(seed, rng)
    test_lazyancestors()
    test_gca()

if __name__ == '__main__':
    main()