revlog: use an LRU cache for delta chain bases
Profiling using statprof revealed a hotspot during changegroup
application calculating delta chain bases on generaldelta repos.
Essentially, revlog._addrevision() was performing a lot of redundant
work tracing the delta chain as part of determining when the chain
distance was acceptable. This was most pronounced when adding
revisions to manifests, which can have delta chains thousands of
revisions long.
There was a delta chain base cache on revlogs before, but it only
captured a single revision. This was acceptable before generaldelta,
when _addrevision would build deltas from the previous revision and
thus we'd pretty much guarantee a cache hit when resolving the delta
chain base on a subsequent _addrevision call. However, it isn't
suitable for generaldelta because parent revisions aren't necessarily
the last processed revision.
This patch converts the delta chain base cache to an LRU dict cache.
The cache can hold multiple entries, so generaldelta repos have a
higher chance of getting a cache hit.
The impact of this change when processing changegroup additions is
significant. On a generaldelta conversion of the "mozilla-unified"
repo (which contains heads of the main Firefox repositories in
chronological order - this means there are lots of transitions between
heads in revlog order), this change has the following impact when
performing an `hg unbundle` of an uncompressed bundle of the repo:
before: 5:42 CPU time
after: 4:34 CPU time
Most of this time is saved when applying the changelog and manifest
revlogs:
before: 2:30 CPU time
after: 1:17 CPU time
That nearly a 50% reduction in CPU time applying changesets and
manifests!
Applying a gzipped bundle of the same repo (effectively simulating a
`hg clone` over HTTP) showed a similar speedup:
before: 5:53 CPU time
after: 4:46 CPU time
Wall time improvements were basically the same as CPU time.
I didn't measure explicitly, but it feels like most of the time
is saved when processing manifests. This makes sense, as large
manifests tend to have very long delta chains and thus benefit the
most from this cache.
So, this change effectively makes changegroup application (which is
used by `hg unbundle`, `hg clone`, `hg pull`, `hg unshelve`, and
various other commands) significantly faster when delta chains are
long (which can happen on repos with large numbers of files and thus
large manifests).
In theory, this change can result in more memory utilization. However,
we're caching a dict of ints. At most we have 200 ints + Python object
overhead per revlog. And, the cache is really only populated when
performing read-heavy operations, such as adding changegroups or
scanning an individual revlog. For memory bloat to be an issue, we'd
need to scan/read several revisions from several revlogs all while
having active references to several revlogs. I don't think there are
many operations that do this, so I don't think memory bloat from the
cache will be an issue.
from __future__ import absolute_import, print_function
import os
import subprocess
import sys
if subprocess.call(['python', '%s/hghave' % os.environ['TESTDIR'],
'cacheable']):
sys.exit(80)
from mercurial import (
extensions,
hg,
scmutil,
ui as uimod,
util,
)
filecache = scmutil.filecache
class fakerepo(object):
def __init__(self):
self._filecache = {}
def join(self, p):
return p
def sjoin(self, p):
return p
@filecache('x', 'y')
def cached(self):
print('creating')
return 'string from function'
def invalidate(self):
for k in self._filecache:
try:
delattr(self, k)
except AttributeError:
pass
def basic(repo):
print("* neither file exists")
# calls function
repo.cached
repo.invalidate()
print("* neither file still exists")
# uses cache
repo.cached
# create empty file
f = open('x', 'w')
f.close()
repo.invalidate()
print("* empty file x created")
# should recreate the object
repo.cached
f = open('x', 'w')
f.write('a')
f.close()
repo.invalidate()
print("* file x changed size")
# should recreate the object
repo.cached
repo.invalidate()
print("* nothing changed with either file")
# stats file again, reuses object
repo.cached
# atomic replace file, size doesn't change
# hopefully st_mtime doesn't change as well so this doesn't use the cache
# because of inode change
f = scmutil.opener('.')('x', 'w', atomictemp=True)
f.write('b')
f.close()
repo.invalidate()
print("* file x changed inode")
repo.cached
# create empty file y
f = open('y', 'w')
f.close()
repo.invalidate()
print("* empty file y created")
# should recreate the object
repo.cached
f = open('y', 'w')
f.write('A')
f.close()
repo.invalidate()
print("* file y changed size")
# should recreate the object
repo.cached
f = scmutil.opener('.')('y', 'w', atomictemp=True)
f.write('B')
f.close()
repo.invalidate()
print("* file y changed inode")
repo.cached
f = scmutil.opener('.')('x', 'w', atomictemp=True)
f.write('c')
f.close()
f = scmutil.opener('.')('y', 'w', atomictemp=True)
f.write('C')
f.close()
repo.invalidate()
print("* both files changed inode")
repo.cached
def fakeuncacheable():
def wrapcacheable(orig, *args, **kwargs):
return False
def wrapinit(orig, *args, **kwargs):
pass
originit = extensions.wrapfunction(util.cachestat, '__init__', wrapinit)
origcacheable = extensions.wrapfunction(util.cachestat, 'cacheable',
wrapcacheable)
for fn in ['x', 'y']:
try:
os.remove(fn)
except OSError:
pass
basic(fakerepo())
util.cachestat.cacheable = origcacheable
util.cachestat.__init__ = originit
def test_filecache_synced():
# test old behavior that caused filecached properties to go out of sync
os.system('hg init && echo a >> a && hg ci -qAm.')
repo = hg.repository(uimod.ui())
# first rollback clears the filecache, but changelog to stays in __dict__
repo.rollback()
repo.commit('.')
# second rollback comes along and touches the changelog externally
# (file is moved)
repo.rollback()
# but since changelog isn't under the filecache control anymore, we don't
# see that it changed, and return the old changelog without reconstructing
# it
repo.commit('.')
def setbeforeget(repo):
os.remove('x')
os.remove('y')
repo.cached = 'string set externally'
repo.invalidate()
print("* neither file exists")
print(repo.cached)
repo.invalidate()
f = open('x', 'w')
f.write('a')
f.close()
print("* file x created")
print(repo.cached)
repo.cached = 'string 2 set externally'
repo.invalidate()
print("* string set externally again")
print(repo.cached)
repo.invalidate()
f = open('y', 'w')
f.write('b')
f.close()
print("* file y created")
print(repo.cached)
print('basic:')
print()
basic(fakerepo())
print()
print('fakeuncacheable:')
print()
fakeuncacheable()
test_filecache_synced()
print()
print('setbeforeget:')
print()
setbeforeget(fakerepo())