Mercurial > hg
view tests/killdaemons.py @ 46667:93e9f448273c
rhg: Add support for automatic fallback to Python
`rhg` is a command-line application that can do a small subset of what
`hg` can. It is written entirely in Rust, which avoids the cost of starting
a Python interpreter and importing many Python modules.
In a script that runs many `hg` commands, this cost can add up.
However making users decide when to use `rhg` instead of `hg` is
not practical as we want the subset of supported functionality
to grow over time.
Instead we introduce "fallback" behavior where, when `rhg` encounters
something (a sub-command, a repository format, …) that is not implemented
in Rust-only, it does nothing but silently start a subprocess of
Python-based `hg` running the same command.
That way `rhg` becomes a drop-in replacement for `hg` that sometimes
goes faster. Whether Python is used should be an implementation detail
not apparent to users (other than through speed).
A new `fallback` value is added to the previously introduced
`rhg.on-unsupported` configuration key. When in this mode, the new
`rhg.fallback-executable` config is determine what command to use
to run a Python-based `hg`.
The previous `rhg.on-unsupported = abort-silent` configuration was designed
to let a wrapper script call `rhg` and then fall back to `hg` based on the
exit code. This is still available, but having fallback behavior built-in
in rhg might be easier for users instead of leaving that script "as an
exercise for the reader".
Using a subprocess like this is not idea, especially when `rhg` is to be
installed in `$PATH` as `hg`, since the other `hg.py` executable needs
to still be available… somewhere. Eventually this could be replaced
by using PyOxidizer to a have a single executable that embeds a Python
interpreter, but only starts it when needed.
Differential Revision: https://phab.mercurial-scm.org/D10093
author | Simon Sapin <simon.sapin@octobus.net> |
---|---|
date | Mon, 01 Mar 2021 20:36:06 +0100 |
parents | c102b704edb5 |
children | 6000f5b25c9b |
line wrap: on
line source
#!/usr/bin/env python3 from __future__ import absolute_import import errno import os import signal import sys import time if os.name == 'nt': import ctypes _BOOL = ctypes.c_long _DWORD = ctypes.c_ulong _UINT = ctypes.c_uint _HANDLE = ctypes.c_void_p ctypes.windll.kernel32.CloseHandle.argtypes = [_HANDLE] ctypes.windll.kernel32.CloseHandle.restype = _BOOL ctypes.windll.kernel32.GetLastError.argtypes = [] ctypes.windll.kernel32.GetLastError.restype = _DWORD ctypes.windll.kernel32.OpenProcess.argtypes = [_DWORD, _BOOL, _DWORD] ctypes.windll.kernel32.OpenProcess.restype = _HANDLE ctypes.windll.kernel32.TerminateProcess.argtypes = [_HANDLE, _UINT] ctypes.windll.kernel32.TerminateProcess.restype = _BOOL ctypes.windll.kernel32.WaitForSingleObject.argtypes = [_HANDLE, _DWORD] ctypes.windll.kernel32.WaitForSingleObject.restype = _DWORD def _check(ret, expectederr=None): if ret == 0: winerrno = ctypes.GetLastError() if winerrno == expectederr: return True raise ctypes.WinError(winerrno) def kill(pid, logfn, tryhard=True): logfn('# Killing daemon process %d' % pid) PROCESS_TERMINATE = 1 PROCESS_QUERY_INFORMATION = 0x400 SYNCHRONIZE = 0x00100000 WAIT_OBJECT_0 = 0 WAIT_TIMEOUT = 258 WAIT_FAILED = _DWORD(0xFFFFFFFF).value handle = ctypes.windll.kernel32.OpenProcess( PROCESS_TERMINATE | SYNCHRONIZE | PROCESS_QUERY_INFORMATION, False, pid, ) if handle is None: _check(0, 87) # err 87 when process not found return # process not found, already finished try: r = ctypes.windll.kernel32.WaitForSingleObject(handle, 100) if r == WAIT_OBJECT_0: pass # terminated, but process handle still available elif r == WAIT_TIMEOUT: _check(ctypes.windll.kernel32.TerminateProcess(handle, -1)) elif r == WAIT_FAILED: _check(0) # err stored in GetLastError() # TODO?: forcefully kill when timeout # and ?shorter waiting time? when tryhard==True r = ctypes.windll.kernel32.WaitForSingleObject(handle, 100) # timeout = 100 ms if r == WAIT_OBJECT_0: pass # process is terminated elif r == WAIT_TIMEOUT: logfn('# Daemon process %d is stuck') elif r == WAIT_FAILED: _check(0) # err stored in GetLastError() except: # re-raises ctypes.windll.kernel32.CloseHandle(handle) # no _check, keep error raise _check(ctypes.windll.kernel32.CloseHandle(handle)) else: def kill(pid, logfn, tryhard=True): try: os.kill(pid, 0) logfn('# Killing daemon process %d' % pid) os.kill(pid, signal.SIGTERM) if tryhard: for i in range(10): time.sleep(0.05) os.kill(pid, 0) else: time.sleep(0.1) os.kill(pid, 0) logfn('# Daemon process %d is stuck - really killing it' % pid) os.kill(pid, signal.SIGKILL) except OSError as err: if err.errno != errno.ESRCH: raise def killdaemons(pidfile, tryhard=True, remove=False, logfn=None): if not logfn: logfn = lambda s: s # Kill off any leftover daemon processes try: pids = [] with open(pidfile) as fp: for line in fp: try: pid = int(line) if pid <= 0: raise ValueError except ValueError: logfn( '# Not killing daemon process %s - invalid pid' % line.rstrip() ) continue pids.append(pid) for pid in pids: kill(pid, logfn, tryhard) if remove: os.unlink(pidfile) except IOError: pass if __name__ == '__main__': if len(sys.argv) > 1: (path,) = sys.argv[1:] else: path = os.environ["DAEMON_PIDS"] killdaemons(path, remove=True)