Mercurial > hg
view mercurial/pure/mpatch.py @ 52285:94cf83d9a2c9
sslutil: drop support for Python prior to 3.7
There's also a block of code around line 47 related to `ssl.HAS_TLSv1` to
determine the supported protocols that references "Python 3.7", but I'm not
altering that because the commit referenced there wasn't landed until just prior
to the 3.9 release, and I'm not sure what flavors of py38 might not have a
backport.
Avoid de-indenting for now for a clearer text diff.
author | Matt Harbison <matt_harbison@yahoo.com> |
---|---|
date | Fri, 08 Nov 2024 19:48:06 -0500 |
parents | f4733654f144 |
children |
line wrap: on
line source
# mpatch.py - Python implementation of mpatch.c # # Copyright 2009 Olivia Mackall <olivia@selenic.com> and others # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import annotations import io import struct from typing import ( List, Tuple, ) stringio = io.BytesIO class mpatchError(Exception): """error raised when a delta cannot be decoded""" # This attempts to apply a series of patches in time proportional to # the total size of the patches, rather than patches * len(text). This # means rather than shuffling strings around, we shuffle around # pointers to fragments with fragment lists. # # When the fragment lists get too long, we collapse them. To do this # efficiently, we do all our operations inside a buffer created by # mmap and simply use memmove. This avoids creating a bunch of large # temporary string buffers. def _pull( dst: List[Tuple[int, int]], src: List[Tuple[int, int]], l: int ) -> None: # pull l bytes from src while l: f = src.pop() if f[0] > l: # do we need to split? src.append((f[0] - l, f[1] + l)) dst.append((l, f[1])) return dst.append(f) l -= f[0] def _move(m: stringio, dest: int, src: int, count: int) -> None: """move count bytes from src to dest The file pointer is left at the end of dest. """ m.seek(src) buf = m.read(count) m.seek(dest) m.write(buf) def _collect( m: stringio, buf: int, list: List[Tuple[int, int]] ) -> Tuple[int, int]: start = buf for l, p in reversed(list): _move(m, buf, p, l) buf += l return (buf - start, start) def patches(a: bytes, bins: List[bytes]) -> bytes: if not bins: return a plens = [len(x) for x in bins] pl = sum(plens) bl = len(a) + pl tl = bl + bl + pl # enough for the patches and two working texts b1, b2 = 0, bl if not tl: return a m = stringio() # load our original text m.write(a) frags = [(len(a), b1)] # copy all the patches into our segment so we can memmove from them pos = b2 + bl m.seek(pos) for p in bins: m.write(p) for plen in plens: # if our list gets too long, execute it if len(frags) > 128: b2, b1 = b1, b2 frags = [_collect(m, b1, frags)] new = [] end = pos + plen last = 0 while pos < end: m.seek(pos) try: p1, p2, l = struct.unpack(b">lll", m.read(12)) except struct.error: raise mpatchError("patch cannot be decoded") _pull(new, frags, p1 - last) # what didn't change _pull([], frags, p2 - p1) # what got deleted new.append((l, pos + 12)) # what got added pos += l + 12 last = p2 frags.extend(reversed(new)) # what was left at the end t = _collect(m, b2, frags) m.seek(t[1]) return m.read(t[0]) def patchedsize(orig: int, delta: bytes) -> int: outlen, last, bin = 0, 0, 0 binend = len(delta) data = 12 while data <= binend: decode = delta[bin : bin + 12] start, end, length = struct.unpack(b">lll", decode) if start > end: break bin = data + length data = bin + 12 outlen += start - last last = end outlen += length if bin != binend: raise mpatchError("patch cannot be decoded") outlen += orig - last return outlen