Mercurial > hg
view mercurial/lock.py @ 44763:94f4f2ec7dee stable
packaging: support building Inno installer with PyOxidizer
We want to start distributing Mercurial on Python 3 on
Windows. PyOxidizer will be our vehicle for achieving that.
This commit implements basic support for producing Inno
installers using PyOxidizer.
While it is an eventual goal of PyOxidizer to produce
installers, those features aren't yet implemented. So our
strategy for producing Mercurial installers is similar to
what we've been doing with py2exe: invoke a build system to
produce files then stage those files into a directory so they
can be turned into an installer.
We had to make significant alterations to the pyoxidizer.bzl
config file to get it to produce the files that we desire for
a Windows install. This meant differentiating the build targets
so we can target Windows specifically.
We've added a new module to hgpackaging to deal with interacting
with PyOxidizer. It is similar to pyexe: we invoke a build process
then copy files to a staging directory. Ideally these extra
files would be defined in pyoxidizer.bzl. But I don't think it
is worth doing at this time, as PyOxidizer's config files are
lacking some features to make this turnkey.
The rest of the change is introducing a variant of the
Inno installer code that invokes PyOxidizer instead of
py2exe.
Comparing the Python 2.7 based Inno installers with this
one, the following changes were observed:
* No lib/*.{pyd, dll} files
* No Microsoft.VC90.CRT.manifest
* No msvc{m,p,r}90.dll files
* python27.dll replaced with python37.dll
* Add vcruntime140.dll file
The disappearance of the .pyd and .dll files is acceptable, as
PyOxidizer has embedded these in hg.exe and loads them from
memory.
The disappearance of the *90* files is acceptable because those
provide the Visual C++ 9 runtime, as required by Python 2.7.
Similarly, the appearance of vcruntime140.dll is a requirement
of Python 3.7.
Differential Revision: https://phab.mercurial-scm.org/D8473
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Thu, 23 Apr 2020 18:06:02 -0700 |
parents | 888bd39ed555 |
children | 9b16bb3b2349 |
line wrap: on
line source
# lock.py - simple advisory locking scheme for mercurial # # Copyright 2005, 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import contextlib import errno import os import signal import socket import time import warnings from .i18n import _ from .pycompat import getattr from . import ( encoding, error, pycompat, util, ) from .utils import procutil def _getlockprefix(): """Return a string which is used to differentiate pid namespaces It's useful to detect "dead" processes and remove stale locks with confidence. Typically it's just hostname. On modern linux, we include an extra Linux-specific pid namespace identifier. """ result = encoding.strtolocal(socket.gethostname()) if pycompat.sysplatform.startswith(b'linux'): try: result += b'/%x' % os.stat(b'/proc/self/ns/pid').st_ino except OSError as ex: if ex.errno not in (errno.ENOENT, errno.EACCES, errno.ENOTDIR): raise return result @contextlib.contextmanager def _delayedinterrupt(): """Block signal interrupt while doing something critical This makes sure that the code block wrapped by this context manager won't be interrupted. For Windows developers: It appears not possible to guard time.sleep() from CTRL_C_EVENT, so please don't use time.sleep() to test if this is working. """ assertedsigs = [] blocked = False orighandlers = {} def raiseinterrupt(num): if num == getattr(signal, 'SIGINT', None) or num == getattr( signal, 'CTRL_C_EVENT', None ): raise KeyboardInterrupt else: raise error.SignalInterrupt def catchterm(num, frame): if blocked: assertedsigs.append(num) else: raiseinterrupt(num) try: # save handlers first so they can be restored even if a setup is # interrupted between signal.signal() and orighandlers[] =. for name in [ b'CTRL_C_EVENT', b'SIGINT', b'SIGBREAK', b'SIGHUP', b'SIGTERM', ]: num = getattr(signal, name, None) if num and num not in orighandlers: orighandlers[num] = signal.getsignal(num) try: for num in orighandlers: signal.signal(num, catchterm) except ValueError: pass # in a thread? no luck blocked = True yield finally: # no simple way to reliably restore all signal handlers because # any loops, recursive function calls, except blocks, etc. can be # interrupted. so instead, make catchterm() raise interrupt. blocked = False try: for num, handler in orighandlers.items(): signal.signal(num, handler) except ValueError: pass # in a thread? # re-raise interrupt exception if any, which may be shadowed by a new # interrupt occurred while re-raising the first one if assertedsigs: raiseinterrupt(assertedsigs[0]) def trylock(ui, vfs, lockname, timeout, warntimeout, *args, **kwargs): """return an acquired lock or raise an a LockHeld exception This function is responsible to issue warnings and or debug messages about the held lock while trying to acquires it.""" def printwarning(printer, locker): """issue the usual "waiting on lock" message through any channel""" # show more details for new-style locks if b':' in locker: host, pid = locker.split(b":", 1) msg = _( b"waiting for lock on %s held by process %r on host %r\n" ) % ( pycompat.bytestr(l.desc), pycompat.bytestr(pid), pycompat.bytestr(host), ) else: msg = _(b"waiting for lock on %s held by %r\n") % ( l.desc, pycompat.bytestr(locker), ) printer(msg) l = lock(vfs, lockname, 0, *args, dolock=False, **kwargs) debugidx = 0 if (warntimeout and timeout) else -1 warningidx = 0 if not timeout: warningidx = -1 elif warntimeout: warningidx = warntimeout delay = 0 while True: try: l._trylock() break except error.LockHeld as inst: if delay == debugidx: printwarning(ui.debug, inst.locker) if delay == warningidx: printwarning(ui.warn, inst.locker) if timeout <= delay: raise error.LockHeld( errno.ETIMEDOUT, inst.filename, l.desc, inst.locker ) time.sleep(1) delay += 1 l.delay = delay if l.delay: if 0 <= warningidx <= l.delay: ui.warn(_(b"got lock after %d seconds\n") % l.delay) else: ui.debug(b"got lock after %d seconds\n" % l.delay) if l.acquirefn: l.acquirefn() return l class lock(object): '''An advisory lock held by one process to control access to a set of files. Non-cooperating processes or incorrectly written scripts can ignore Mercurial's locking scheme and stomp all over the repository, so don't do that. Typically used via localrepository.lock() to lock the repository store (.hg/store/) or localrepository.wlock() to lock everything else under .hg/.''' # lock is symlink on platforms that support it, file on others. # symlink is used because create of directory entry and contents # are atomic even over nfs. # old-style lock: symlink to pid # new-style lock: symlink to hostname:pid _host = None def __init__( self, vfs, fname, timeout=-1, releasefn=None, acquirefn=None, desc=None, inheritchecker=None, parentlock=None, signalsafe=True, dolock=True, ): self.vfs = vfs self.f = fname self.held = 0 self.timeout = timeout self.releasefn = releasefn self.acquirefn = acquirefn self.desc = desc self._inheritchecker = inheritchecker self.parentlock = parentlock self._parentheld = False self._inherited = False if signalsafe: self._maybedelayedinterrupt = _delayedinterrupt else: self._maybedelayedinterrupt = util.nullcontextmanager self.postrelease = [] self.pid = self._getpid() if dolock: self.delay = self.lock() if self.acquirefn: self.acquirefn() def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): success = all(a is None for a in (exc_type, exc_value, exc_tb)) self.release(success=success) def __del__(self): if self.held: warnings.warn( "use lock.release instead of del lock", category=DeprecationWarning, stacklevel=2, ) # ensure the lock will be removed # even if recursive locking did occur self.held = 1 self.release() def _getpid(self): # wrapper around procutil.getpid() to make testing easier return procutil.getpid() def lock(self): timeout = self.timeout while True: try: self._trylock() return self.timeout - timeout except error.LockHeld as inst: if timeout != 0: time.sleep(1) if timeout > 0: timeout -= 1 continue raise error.LockHeld( errno.ETIMEDOUT, inst.filename, self.desc, inst.locker ) def _trylock(self): if self.held: self.held += 1 return if lock._host is None: lock._host = _getlockprefix() lockname = b'%s:%d' % (lock._host, self.pid) retry = 5 while not self.held and retry: retry -= 1 try: with self._maybedelayedinterrupt(): self.vfs.makelock(lockname, self.f) self.held = 1 except (OSError, IOError) as why: if why.errno == errno.EEXIST: locker = self._readlock() if locker is None: continue # special case where a parent process holds the lock -- this # is different from the pid being different because we do # want the unlock and postrelease functions to be called, # but the lockfile to not be removed. if locker == self.parentlock: self._parentheld = True self.held = 1 return locker = self._testlock(locker) if locker is not None: raise error.LockHeld( errno.EAGAIN, self.vfs.join(self.f), self.desc, locker, ) else: raise error.LockUnavailable( why.errno, why.strerror, why.filename, self.desc ) if not self.held: # use empty locker to mean "busy for frequent lock/unlock # by many processes" raise error.LockHeld( errno.EAGAIN, self.vfs.join(self.f), self.desc, b"" ) def _readlock(self): """read lock and return its value Returns None if no lock exists, pid for old-style locks, and host:pid for new-style locks. """ try: return self.vfs.readlock(self.f) except (OSError, IOError) as why: if why.errno == errno.ENOENT: return None raise def _lockshouldbebroken(self, locker): if locker is None: return False try: host, pid = locker.split(b":", 1) except ValueError: return False if host != lock._host: return False try: pid = int(pid) except ValueError: return False if procutil.testpid(pid): return False return True def _testlock(self, locker): if not self._lockshouldbebroken(locker): return locker # if locker dead, break lock. must do this with another lock # held, or can race and break valid lock. try: with lock(self.vfs, self.f + b'.break', timeout=0): locker = self._readlock() if not self._lockshouldbebroken(locker): return locker self.vfs.unlink(self.f) except error.LockError: return locker def testlock(self): """return id of locker if lock is valid, else None. If old-style lock, we cannot tell what machine locker is on. with new-style lock, if locker is on this machine, we can see if locker is alive. If locker is on this machine but not alive, we can safely break lock. The lock file is only deleted when None is returned. """ locker = self._readlock() return self._testlock(locker) @contextlib.contextmanager def inherit(self): """context for the lock to be inherited by a Mercurial subprocess. Yields a string that will be recognized by the lock in the subprocess. Communicating this string to the subprocess needs to be done separately -- typically by an environment variable. """ if not self.held: raise error.LockInheritanceContractViolation( b'inherit can only be called while lock is held' ) if self._inherited: raise error.LockInheritanceContractViolation( b'inherit cannot be called while lock is already inherited' ) if self._inheritchecker is not None: self._inheritchecker() if self.releasefn: self.releasefn() if self._parentheld: lockname = self.parentlock else: lockname = b'%s:%d' % (lock._host, self.pid) self._inherited = True try: yield lockname finally: if self.acquirefn: self.acquirefn() self._inherited = False def release(self, success=True): """release the lock and execute callback function if any If the lock has been acquired multiple times, the actual release is delayed to the last release call.""" if self.held > 1: self.held -= 1 elif self.held == 1: self.held = 0 if self._getpid() != self.pid: # we forked, and are not the parent return try: if self.releasefn: self.releasefn() finally: if not self._parentheld: try: self.vfs.unlink(self.f) except OSError: pass # The postrelease functions typically assume the lock is not held # at all. if not self._parentheld: for callback in self.postrelease: callback(success) # Prevent double usage and help clear cycles. self.postrelease = None def release(*locks): for lock in locks: if lock is not None: lock.release()