view mercurial/hbisect.py @ 35569:964212780daf

rust: implementation of `hg` This commit provides a mostly-working implementation of the `hg` script in Rust along with scaffolding to support Rust in the repository. If you are familiar with Rust, the contents of the added rust/ directory should be pretty straightforward. We create an "hgcli" package that implements a binary application to run Mercurial. The output of this package is an "hg" binary. Our Rust `hg` (henceforth "rhg") essentially is a port of the existing `hg` Python script. The main difference is the creation of the embedded CPython interpreter is handled by the binary itself instead of relying on the shebang. In that sense, rhg is more similar to the "exe wrapper" we currently use on Windows. However, unlike the exe wrapper, rhg does not call the `hg` Python script. Instead, it uses the CPython APIs to import mercurial modules and call appropriate functions. The amount of code here is surprisingly small. It is my intent to replace the existing C-based exe wrapper with rhg. Preferably in the next Mercurial release. This should be achievable - at least for some Mercurial distributions. The future/timeline for rhg on other platforms is less clear. We already ship a hg.exe on Windows. So if we get the quirks with Rust worked out, shipping a Rust-based hg.exe should hopefully not be too contentious. Now onto the implementation. We're using python27-sys and the cpython crates for talking to the CPython API. We currently don't use too much functionality of the cpython crate and could have probably cut it out. However, it does provide a reasonable abstraction over unsafe {} CPython function calls. While we still have our fair share of those, at least we're not dealing with too much refcounting, error checking, etc. So I think the use of the cpython crate is justified. Plus, there is not-yet-implemented functionality that could benefit from cpython. I see our use of this crate only increasing. The cpython and python27-sys crates are not without their issues. The cpython crate didn't seem to account for the embedding use case in its design. Instead, it seems to assume that you are building a Python extension. It is making some questionable decisions around certain CPython APIs. For example, it insists that PyEval_ThreadsInitialized() is called and that the Python code likely isn't the main thread in the underlying application. It is also missing some functionality that is important for embedded use cases (such as exporting the path to the Python interpreter from its build script). After spending several hours trying to wrangle python27-sys and cpython, I gave up and forked the project on GitHub. Our Cargo.toml tracks this fork. I'm optimistic that the upstream project will accept our contributions and we can eventually unfork. There is a non-trivial amount of code in our custom Cargo build script. Our build.rs (which is called as part of building the hgcli crate): * Validates that the Python interpreter that was detected by the python27-sys crate provides a shared library (we only support shared library linking at this time - although this restriction could be loosened). * Validates that the Python is built with UCS-4 support. This ensures maximum Unicode compatibility. * Exports variables to the crate build allowing the built crate to e.g. find the path to the Python interpreter. The produced rhg should be considered alpha quality. There are several known deficiencies. Many of these are documented with inline TODOs. Probably the biggest limitation of rhg is that it assumes it is running from the ./rust/target/<target> directory of a source distribution. So, rhg is currently not very practical for real-world use. But, if you can `cargo build` it, running the binary *should* yield a working Mercurial CLI. In order to support using rhg with the test harness, we needed to hack up run-tests.py so the path to Mercurial's Python files is set properly. The change is extremely hacky and is only intended to be a stop-gap until the test harness gains first-class support for installing rhg. This will likely occur after we support running rhg outside the source directory. Despite its officially alpha quality, rhg copes extremely well with the test harness (at least on Linux). Using `run-tests.py --with-hg ../rust/target/debug/hg`, I only encounter the following failures: * test-run-tests.t -- Warnings emitted about using an unexpected Mercurial library. This is due to the hacky nature of setting the Python directory when run-tests.py detected rhg. * test-devel-warnings.t -- Expected stack trace missing frame for `hg` (This is expected since we no longer have an `hg` script!) * test-convert.t -- Test running `$PYTHON "$BINDIR"/hg`, which obviously assumes `hg` is a Python script. * test-merge-tools.t -- Same assumption about `hg` being executable with Python. * test-http-bad-server.t -- Seeing exit code 255 instead of 1 around line 358. * test-blackbox.t -- Exit code 255 instead of 1. * test-basic.t -- Exit code 255 instead of 1. It certainly looks like we have a bug around exit code handling. I don't think it is severe enough to hold up review and landing of this initial implementation. Perfect is the enemy of good. Differential Revision: https://phab.mercurial-scm.org/D1581
author Gregory Szorc <gregory.szorc@gmail.com>
date Wed, 10 Jan 2018 08:53:22 -0800
parents 8287df8b7be5
children 80da79b6fbe4
line wrap: on
line source

# changelog bisection for mercurial
#
# Copyright 2007 Matt Mackall
# Copyright 2005, 2006 Benoit Boissinot <benoit.boissinot@ens-lyon.org>
#
# Inspired by git bisect, extension skeleton taken from mq.py.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import collections

from .i18n import _
from .node import (
    hex,
    short,
)
from . import (
    error,
)

def bisect(repo, state):
    """find the next node (if any) for testing during a bisect search.
    returns a (nodes, number, good) tuple.

    'nodes' is the final result of the bisect if 'number' is 0.
    Otherwise 'number' indicates the remaining possible candidates for
    the search and 'nodes' contains the next bisect target.
    'good' is True if bisect is searching for a first good changeset, False
    if searching for a first bad one.
    """

    changelog = repo.changelog
    clparents = changelog.parentrevs
    skip = set([changelog.rev(n) for n in state['skip']])

    def buildancestors(bad, good):
        badrev = min([changelog.rev(n) for n in bad])
        ancestors = collections.defaultdict(lambda: None)
        for rev in repo.revs("descendants(%ln) - ancestors(%ln)", good, good):
            ancestors[rev] = []
        if ancestors[badrev] is None:
            return badrev, None
        return badrev, ancestors

    good = False
    badrev, ancestors = buildancestors(state['bad'], state['good'])
    if not ancestors: # looking for bad to good transition?
        good = True
        badrev, ancestors = buildancestors(state['good'], state['bad'])
    bad = changelog.node(badrev)
    if not ancestors: # now we're confused
        if (len(state['bad']) == 1 and len(state['good']) == 1 and
            state['bad'] != state['good']):
            raise error.Abort(_("starting revisions are not directly related"))
        raise error.Abort(_("inconsistent state, %s:%s is good and bad")
                         % (badrev, short(bad)))

    # build children dict
    children = {}
    visit = collections.deque([badrev])
    candidates = []
    while visit:
        rev = visit.popleft()
        if ancestors[rev] == []:
            candidates.append(rev)
            for prev in clparents(rev):
                if prev != -1:
                    if prev in children:
                        children[prev].append(rev)
                    else:
                        children[prev] = [rev]
                        visit.append(prev)

    candidates.sort()
    # have we narrowed it down to one entry?
    # or have all other possible candidates besides 'bad' have been skipped?
    tot = len(candidates)
    unskipped = [c for c in candidates if (c not in skip) and (c != badrev)]
    if tot == 1 or not unskipped:
        return ([changelog.node(c) for c in candidates], 0, good)
    perfect = tot // 2

    # find the best node to test
    best_rev = None
    best_len = -1
    poison = set()
    for rev in candidates:
        if rev in poison:
            # poison children
            poison.update(children.get(rev, []))
            continue

        a = ancestors[rev] or [rev]
        ancestors[rev] = None

        x = len(a) # number of ancestors
        y = tot - x # number of non-ancestors
        value = min(x, y) # how good is this test?
        if value > best_len and rev not in skip:
            best_len = value
            best_rev = rev
            if value == perfect: # found a perfect candidate? quit early
                break

        if y < perfect and rev not in skip: # all downhill from here?
            # poison children
            poison.update(children.get(rev, []))
            continue

        for c in children.get(rev, []):
            if ancestors[c]:
                ancestors[c] = list(set(ancestors[c] + a))
            else:
                ancestors[c] = a + [c]

    assert best_rev is not None
    best_node = changelog.node(best_rev)

    return ([best_node], tot, good)

def extendrange(repo, state, nodes, good):
    # bisect is incomplete when it ends on a merge node and
    # one of the parent was not checked.
    parents = repo[nodes[0]].parents()
    if len(parents) > 1:
        if good:
            side = state['bad']
        else:
            side = state['good']
        num = len(set(i.node() for i in parents) & set(side))
        if num == 1:
            return parents[0].ancestor(parents[1])
    return None

def load_state(repo):
    state = {'current': [], 'good': [], 'bad': [], 'skip': []}
    for l in repo.vfs.tryreadlines("bisect.state"):
        kind, node = l[:-1].split()
        node = repo.lookup(node)
        if kind not in state:
            raise error.Abort(_("unknown bisect kind %s") % kind)
        state[kind].append(node)
    return state


def save_state(repo, state):
    f = repo.vfs("bisect.state", "w", atomictemp=True)
    with repo.wlock():
        for kind in sorted(state):
            for node in state[kind]:
                f.write("%s %s\n" % (kind, hex(node)))
        f.close()

def resetstate(repo):
    """remove any bisect state from the repository"""
    if repo.vfs.exists("bisect.state"):
        repo.vfs.unlink("bisect.state")

def checkstate(state):
    """check we have both 'good' and 'bad' to define a range

    Raise Abort exception otherwise."""
    if state['good'] and state['bad']:
        return True
    if not state['good']:
        raise error.Abort(_('cannot bisect (no known good revisions)'))
    else:
        raise error.Abort(_('cannot bisect (no known bad revisions)'))

def get(repo, status):
    """
    Return a list of revision(s) that match the given status:

    - ``good``, ``bad``, ``skip``: csets explicitly marked as good/bad/skip
    - ``goods``, ``bads``      : csets topologically good/bad
    - ``range``              : csets taking part in the bisection
    - ``pruned``             : csets that are goods, bads or skipped
    - ``untested``           : csets whose fate is yet unknown
    - ``ignored``            : csets ignored due to DAG topology
    - ``current``            : the cset currently being bisected
    """
    state = load_state(repo)
    if status in ('good', 'bad', 'skip', 'current'):
        return map(repo.changelog.rev, state[status])
    else:
        # In the following sets, we do *not* call 'bisect()' with more
        # than one level of recursion, because that can be very, very
        # time consuming. Instead, we always develop the expression as
        # much as possible.

        # 'range' is all csets that make the bisection:
        #   - have a good ancestor and a bad descendant, or conversely
        # that's because the bisection can go either way
        range = '( bisect(bad)::bisect(good) | bisect(good)::bisect(bad) )'

        _t = repo.revs('bisect(good)::bisect(bad)')
        # The sets of topologically good or bad csets
        if len(_t) == 0:
            # Goods are topologically after bads
            goods = 'bisect(good)::'    # Pruned good csets
            bads  = '::bisect(bad)'     # Pruned bad csets
        else:
            # Goods are topologically before bads
            goods = '::bisect(good)'    # Pruned good csets
            bads  = 'bisect(bad)::'     # Pruned bad csets

        # 'pruned' is all csets whose fate is already known: good, bad, skip
        skips = 'bisect(skip)'                 # Pruned skipped csets
        pruned = '( (%s) | (%s) | (%s) )' % (goods, bads, skips)

        # 'untested' is all cset that are- in 'range', but not in 'pruned'
        untested = '( (%s) - (%s) )' % (range, pruned)

        # 'ignored' is all csets that were not used during the bisection
        # due to DAG topology, but may however have had an impact.
        # E.g., a branch merged between bads and goods, but whose branch-
        # point is out-side of the range.
        iba = '::bisect(bad) - ::bisect(good)'  # Ignored bads' ancestors
        iga = '::bisect(good) - ::bisect(bad)'  # Ignored goods' ancestors
        ignored = '( ( (%s) | (%s) ) - (%s) )' % (iba, iga, range)

        if status == 'range':
            return repo.revs(range)
        elif status == 'pruned':
            return repo.revs(pruned)
        elif status == 'untested':
            return repo.revs(untested)
        elif status == 'ignored':
            return repo.revs(ignored)
        elif status == "goods":
            return repo.revs(goods)
        elif status == "bads":
            return repo.revs(bads)
        else:
            raise error.ParseError(_('invalid bisect state'))

def label(repo, node):
    rev = repo.changelog.rev(node)

    # Try explicit sets
    if rev in get(repo, 'good'):
        # i18n: bisect changeset status
        return _('good')
    if rev in get(repo, 'bad'):
        # i18n: bisect changeset status
        return _('bad')
    if rev in get(repo, 'skip'):
        # i18n: bisect changeset status
        return _('skipped')
    if rev in get(repo, 'untested') or rev in get(repo, 'current'):
        # i18n: bisect changeset status
        return _('untested')
    if rev in get(repo, 'ignored'):
        # i18n: bisect changeset status
        return _('ignored')

    # Try implicit sets
    if rev in get(repo, 'goods'):
        # i18n: bisect changeset status
        return _('good (implicit)')
    if rev in get(repo, 'bads'):
        # i18n: bisect changeset status
        return _('bad (implicit)')

    return None

def shortlabel(label):
    if label:
        return label[0].upper()

    return None

def printresult(ui, repo, state, displayer, nodes, good):
    if len(nodes) == 1:
        # narrowed it down to a single revision
        if good:
            ui.write(_("The first good revision is:\n"))
        else:
            ui.write(_("The first bad revision is:\n"))
        displayer.show(repo[nodes[0]])
        extendnode = extendrange(repo, state, nodes, good)
        if extendnode is not None:
            ui.write(_('Not all ancestors of this changeset have been'
                       ' checked.\nUse bisect --extend to continue the '
                       'bisection from\nthe common ancestor, %s.\n')
                     % extendnode)
    else:
        # multiple possible revisions
        if good:
            ui.write(_("Due to skipped revisions, the first "
                    "good revision could be any of:\n"))
        else:
            ui.write(_("Due to skipped revisions, the first "
                    "bad revision could be any of:\n"))
        for n in nodes:
            displayer.show(repo[n])
    displayer.close()