Mercurial > hg
view mercurial/obsolete.py @ 21510:97127c4ce460
run-tests: move debug into an argument to Test.__init__
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Tue, 22 Apr 2014 11:44:34 -0700 |
parents | bf2891877378 |
children | a56038e6a3c9 b27c3beaaf30 |
line wrap: on
line source
# obsolete.py - obsolete markers handling # # Copyright 2012 Pierre-Yves David <pierre-yves.david@ens-lyon.org> # Logilab SA <contact@logilab.fr> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. """Obsolete marker handling An obsolete marker maps an old changeset to a list of new changesets. If the list of new changesets is empty, the old changeset is said to be "killed". Otherwise, the old changeset is being "replaced" by the new changesets. Obsolete markers can be used to record and distribute changeset graph transformations performed by history rewrite operations, and help building new tools to reconcile conflicting rewrite actions. To facilitate conflict resolution, markers include various annotations besides old and news changeset identifiers, such as creation date or author name. The old obsoleted changeset is called a "precursor" and possible replacements are called "successors". Markers that used changeset X as a precursor are called "successor markers of X" because they hold information about the successors of X. Markers that use changeset Y as a successors are call "precursor markers of Y" because they hold information about the precursors of Y. Examples: - When changeset A is replaced by changeset A', one marker is stored: (A, (A',)) - When changesets A and B are folded into a new changeset C, two markers are stored: (A, (C,)) and (B, (C,)) - When changeset A is simply "pruned" from the graph, a marker is created: (A, ()) - When changeset A is split into B and C, a single marker are used: (A, (C, C)) We use a single marker to distinguish the "split" case from the "divergence" case. If two independent operations rewrite the same changeset A in to A' and A'', we have an error case: divergent rewriting. We can detect it because two markers will be created independently: (A, (B,)) and (A, (C,)) Format ------ Markers are stored in an append-only file stored in '.hg/store/obsstore'. The file starts with a version header: - 1 unsigned byte: version number, starting at zero. The header is followed by the markers. Each marker is made of: - 1 unsigned byte: number of new changesets "N", can be zero. - 1 unsigned 32-bits integer: metadata size "M" in bytes. - 1 byte: a bit field. It is reserved for flags used in common obsolete marker operations, to avoid repeated decoding of metadata entries. - 20 bytes: obsoleted changeset identifier. - N*20 bytes: new changesets identifiers. - M bytes: metadata as a sequence of nul-terminated strings. Each string contains a key and a value, separated by a colon ':', without additional encoding. Keys cannot contain '\0' or ':' and values cannot contain '\0'. """ import struct import util, base85, node import phases from i18n import _ _pack = struct.pack _unpack = struct.unpack _SEEK_END = 2 # os.SEEK_END was introduced in Python 2.5 # the obsolete feature is not mature enough to be enabled by default. # you have to rely on third party extension extension to enable this. _enabled = False # data used for parsing and writing _fmversion = 0 _fmfixed = '>BIB20s' _fmnode = '20s' _fmfsize = struct.calcsize(_fmfixed) _fnodesize = struct.calcsize(_fmnode) ### obsolescence marker flag ## bumpedfix flag # # When a changeset A' succeed to a changeset A which became public, we call A' # "bumped" because it's a successors of a public changesets # # o A' (bumped) # |`: # | o A # |/ # o Z # # The way to solve this situation is to create a new changeset Ad as children # of A. This changeset have the same content than A'. So the diff from A to A' # is the same than the diff from A to Ad. Ad is marked as a successors of A' # # o Ad # |`: # | x A' # |'| # o | A # |/ # o Z # # But by transitivity Ad is also a successors of A. To avoid having Ad marked # as bumped too, we add the `bumpedfix` flag to the marker. <A', (Ad,)>. # This flag mean that the successors express the changes between the public and # bumped version and fix the situation, breaking the transitivity of # "bumped" here. bumpedfix = 1 def _readmarkers(data): """Read and enumerate markers from raw data""" off = 0 diskversion = _unpack('>B', data[off:off + 1])[0] off += 1 if diskversion != _fmversion: raise util.Abort(_('parsing obsolete marker: unknown version %r') % diskversion) # Loop on markers l = len(data) while off + _fmfsize <= l: # read fixed part cur = data[off:off + _fmfsize] off += _fmfsize nbsuc, mdsize, flags, pre = _unpack(_fmfixed, cur) # read replacement sucs = () if nbsuc: s = (_fnodesize * nbsuc) cur = data[off:off + s] sucs = _unpack(_fmnode * nbsuc, cur) off += s # read metadata # (metadata will be decoded on demand) metadata = data[off:off + mdsize] if len(metadata) != mdsize: raise util.Abort(_('parsing obsolete marker: metadata is too ' 'short, %d bytes expected, got %d') % (mdsize, len(metadata))) off += mdsize yield (pre, sucs, flags, metadata) def encodemeta(meta): """Return encoded metadata string to string mapping. Assume no ':' in key and no '\0' in both key and value.""" for key, value in meta.iteritems(): if ':' in key or '\0' in key: raise ValueError("':' and '\0' are forbidden in metadata key'") if '\0' in value: raise ValueError("':' is forbidden in metadata value'") return '\0'.join(['%s:%s' % (k, meta[k]) for k in sorted(meta)]) def decodemeta(data): """Return string to string dictionary from encoded version.""" d = {} for l in data.split('\0'): if l: key, value = l.split(':') d[key] = value return d class marker(object): """Wrap obsolete marker raw data""" def __init__(self, repo, data): # the repo argument will be used to create changectx in later version self._repo = repo self._data = data self._decodedmeta = None def __hash__(self): return hash(self._data) def __eq__(self, other): if type(other) != type(self): return False return self._data == other._data def precnode(self): """Precursor changeset node identifier""" return self._data[0] def succnodes(self): """List of successor changesets node identifiers""" return self._data[1] def metadata(self): """Decoded metadata dictionary""" if self._decodedmeta is None: self._decodedmeta = decodemeta(self._data[3]) return self._decodedmeta def date(self): """Creation date as (unixtime, offset)""" parts = self.metadata()['date'].split(' ') return (float(parts[0]), int(parts[1])) class obsstore(object): """Store obsolete markers Markers can be accessed with two mappings: - precursors[x] -> set(markers on precursors edges of x) - successors[x] -> set(markers on successors edges of x) """ def __init__(self, sopener): # caches for various obsolescence related cache self.caches = {} self._all = [] # new markers to serialize self.precursors = {} self.successors = {} self.sopener = sopener data = sopener.tryread('obsstore') if data: self._load(_readmarkers(data)) def __iter__(self): return iter(self._all) def __len__(self): return len(self._all) def __nonzero__(self): return bool(self._all) def create(self, transaction, prec, succs=(), flag=0, metadata=None): """obsolete: add a new obsolete marker * ensuring it is hashable * check mandatory metadata * encode metadata If you are a human writing code creating marker you want to use the `createmarkers` function in this module instead. return True if a new marker have been added, False if the markers already existed (no op). """ if metadata is None: metadata = {} if 'date' not in metadata: metadata['date'] = "%d %d" % util.makedate() if len(prec) != 20: raise ValueError(prec) for succ in succs: if len(succ) != 20: raise ValueError(succ) marker = (str(prec), tuple(succs), int(flag), encodemeta(metadata)) return bool(self.add(transaction, [marker])) def add(self, transaction, markers): """Add new markers to the store Take care of filtering duplicate. Return the number of new marker.""" if not _enabled: raise util.Abort('obsolete feature is not enabled on this repo') known = set(self._all) new = [] for m in markers: if m not in known: known.add(m) new.append(m) if new: f = self.sopener('obsstore', 'ab') try: # Whether the file's current position is at the begin or at # the end after opening a file for appending is implementation # defined. So we must seek to the end before calling tell(), # or we may get a zero offset for non-zero sized files on # some platforms (issue3543). f.seek(0, _SEEK_END) offset = f.tell() transaction.add('obsstore', offset) # offset == 0: new file - add the version header for bytes in _encodemarkers(new, offset == 0): f.write(bytes) finally: # XXX: f.close() == filecache invalidation == obsstore rebuilt. # call 'filecacheentry.refresh()' here f.close() self._load(new) # new marker *may* have changed several set. invalidate the cache. self.caches.clear() return len(new) def mergemarkers(self, transaction, data): markers = _readmarkers(data) self.add(transaction, markers) def _load(self, markers): for mark in markers: self._all.append(mark) pre, sucs = mark[:2] self.successors.setdefault(pre, set()).add(mark) for suc in sucs: self.precursors.setdefault(suc, set()).add(mark) if node.nullid in self.precursors: raise util.Abort(_('bad obsolescence marker detected: ' 'invalid successors nullid')) def _encodemarkers(markers, addheader=False): # Kept separate from flushmarkers(), it will be reused for # markers exchange. if addheader: yield _pack('>B', _fmversion) for marker in markers: yield _encodeonemarker(marker) def _encodeonemarker(marker): pre, sucs, flags, metadata = marker nbsuc = len(sucs) format = _fmfixed + (_fmnode * nbsuc) data = [nbsuc, len(metadata), flags, pre] data.extend(sucs) return _pack(format, *data) + metadata # arbitrary picked to fit into 8K limit from HTTP server # you have to take in account: # - the version header # - the base85 encoding _maxpayload = 5300 def _pushkeyescape(markers): """encode markers into a dict suitable for pushkey exchange - binary data is base85 encoded - split in chunks smaller than 5300 bytes""" keys = {} parts = [] currentlen = _maxpayload * 2 # ensure we create a new part for marker in markers: nextdata = _encodeonemarker(marker) if (len(nextdata) + currentlen > _maxpayload): currentpart = [] currentlen = 0 parts.append(currentpart) currentpart.append(nextdata) currentlen += len(nextdata) for idx, part in enumerate(reversed(parts)): data = ''.join([_pack('>B', _fmversion)] + part) keys['dump%i' % idx] = base85.b85encode(data) return keys def listmarkers(repo): """List markers over pushkey""" if not repo.obsstore: return {} return _pushkeyescape(repo.obsstore) def pushmarker(repo, key, old, new): """Push markers over pushkey""" if not key.startswith('dump'): repo.ui.warn(_('unknown key: %r') % key) return 0 if old: repo.ui.warn(_('unexpected old value for %r') % key) return 0 data = base85.b85decode(new) lock = repo.lock() try: tr = repo.transaction('pushkey: obsolete markers') try: repo.obsstore.mergemarkers(tr, data) tr.close() return 1 finally: tr.release() finally: lock.release() def allmarkers(repo): """all obsolete markers known in a repository""" for markerdata in repo.obsstore: yield marker(repo, markerdata) def precursormarkers(ctx): """obsolete marker marking this changeset as a successors""" for data in ctx._repo.obsstore.precursors.get(ctx.node(), ()): yield marker(ctx._repo, data) def successormarkers(ctx): """obsolete marker making this changeset obsolete""" for data in ctx._repo.obsstore.successors.get(ctx.node(), ()): yield marker(ctx._repo, data) def allsuccessors(obsstore, nodes, ignoreflags=0): """Yield node for every successor of <nodes>. Some successors may be unknown locally. This is a linear yield unsuited to detecting split changesets. It includes initial nodes too.""" remaining = set(nodes) seen = set(remaining) while remaining: current = remaining.pop() yield current for mark in obsstore.successors.get(current, ()): # ignore marker flagged with specified flag if mark[2] & ignoreflags: continue for suc in mark[1]: if suc not in seen: seen.add(suc) remaining.add(suc) def allprecursors(obsstore, nodes, ignoreflags=0): """Yield node for every precursors of <nodes>. Some precursors may be unknown locally. This is a linear yield unsuited to detecting folded changesets. It includes initial nodes too.""" remaining = set(nodes) seen = set(remaining) while remaining: current = remaining.pop() yield current for mark in obsstore.precursors.get(current, ()): # ignore marker flagged with specified flag if mark[2] & ignoreflags: continue suc = mark[0] if suc not in seen: seen.add(suc) remaining.add(suc) def foreground(repo, nodes): """return all nodes in the "foreground" of other node The foreground of a revision is anything reachable using parent -> children or precursor -> successor relation. It is very similar to "descendant" but augmented with obsolescence information. Beware that possible obsolescence cycle may result if complex situation. """ repo = repo.unfiltered() foreground = set(repo.set('%ln::', nodes)) if repo.obsstore: # We only need this complicated logic if there is obsolescence # XXX will probably deserve an optimised revset. nm = repo.changelog.nodemap plen = -1 # compute the whole set of successors or descendants while len(foreground) != plen: plen = len(foreground) succs = set(c.node() for c in foreground) mutable = [c.node() for c in foreground if c.mutable()] succs.update(allsuccessors(repo.obsstore, mutable)) known = (n for n in succs if n in nm) foreground = set(repo.set('%ln::', known)) return set(c.node() for c in foreground) def successorssets(repo, initialnode, cache=None): """Return all set of successors of initial nodes The successors set of a changeset A are a group of revisions that succeed A. It succeeds A as a consistent whole, each revision being only a partial replacement. The successors set contains non-obsolete changesets only. This function returns the full list of successor sets which is why it returns a list of tuples and not just a single tuple. Each tuple is a valid successors set. Not that (A,) may be a valid successors set for changeset A (see below). In most cases, a changeset A will have a single element (e.g. the changeset A is replaced by A') in its successors set. Though, it is also common for a changeset A to have no elements in its successor set (e.g. the changeset has been pruned). Therefore, the returned list of successors sets will be [(A',)] or [], respectively. When a changeset A is split into A' and B', however, it will result in a successors set containing more than a single element, i.e. [(A',B')]. Divergent changesets will result in multiple successors sets, i.e. [(A',), (A'')]. If a changeset A is not obsolete, then it will conceptually have no successors set. To distinguish this from a pruned changeset, the successor set will only contain itself, i.e. [(A,)]. Finally, successors unknown locally are considered to be pruned (obsoleted without any successors). The optional `cache` parameter is a dictionary that may contain precomputed successors sets. It is meant to reuse the computation of a previous call to `successorssets` when multiple calls are made at the same time. The cache dictionary is updated in place. The caller is responsible for its live spawn. Code that makes multiple calls to `successorssets` *must* use this cache mechanism or suffer terrible performances. """ succmarkers = repo.obsstore.successors # Stack of nodes we search successors sets for toproceed = [initialnode] # set version of above list for fast loop detection # element added to "toproceed" must be added here stackedset = set(toproceed) if cache is None: cache = {} # This while loop is the flattened version of a recursive search for # successors sets # # def successorssets(x): # successors = directsuccessors(x) # ss = [[]] # for succ in directsuccessors(x): # # product as in itertools cartesian product # ss = product(ss, successorssets(succ)) # return ss # # But we can not use plain recursive calls here: # - that would blow the python call stack # - obsolescence markers may have cycles, we need to handle them. # # The `toproceed` list act as our call stack. Every node we search # successors set for are stacked there. # # The `stackedset` is set version of this stack used to check if a node is # already stacked. This check is used to detect cycles and prevent infinite # loop. # # successors set of all nodes are stored in the `cache` dictionary. # # After this while loop ends we use the cache to return the successors sets # for the node requested by the caller. while toproceed: # Every iteration tries to compute the successors sets of the topmost # node of the stack: CURRENT. # # There are four possible outcomes: # # 1) We already know the successors sets of CURRENT: # -> mission accomplished, pop it from the stack. # 2) Node is not obsolete: # -> the node is its own successors sets. Add it to the cache. # 3) We do not know successors set of direct successors of CURRENT: # -> We add those successors to the stack. # 4) We know successors sets of all direct successors of CURRENT: # -> We can compute CURRENT successors set and add it to the # cache. # current = toproceed[-1] if current in cache: # case (1): We already know the successors sets stackedset.remove(toproceed.pop()) elif current not in succmarkers: # case (2): The node is not obsolete. if current in repo: # We have a valid last successors. cache[current] = [(current,)] else: # Final obsolete version is unknown locally. # Do not count that as a valid successors cache[current] = [] else: # cases (3) and (4) # # We proceed in two phases. Phase 1 aims to distinguish case (3) # from case (4): # # For each direct successors of CURRENT, we check whether its # successors sets are known. If they are not, we stack the # unknown node and proceed to the next iteration of the while # loop. (case 3) # # During this step, we may detect obsolescence cycles: a node # with unknown successors sets but already in the call stack. # In such a situation, we arbitrary set the successors sets of # the node to nothing (node pruned) to break the cycle. # # If no break was encountered we proceed to phase 2. # # Phase 2 computes successors sets of CURRENT (case 4); see details # in phase 2 itself. # # Note the two levels of iteration in each phase. # - The first one handles obsolescence markers using CURRENT as # precursor (successors markers of CURRENT). # # Having multiple entry here means divergence. # # - The second one handles successors defined in each marker. # # Having none means pruned node, multiple successors means split, # single successors are standard replacement. # for mark in sorted(succmarkers[current]): for suc in mark[1]: if suc not in cache: if suc in stackedset: # cycle breaking cache[suc] = [] else: # case (3) If we have not computed successors sets # of one of those successors we add it to the # `toproceed` stack and stop all work for this # iteration. toproceed.append(suc) stackedset.add(suc) break else: continue break else: # case (4): we know all successors sets of all direct # successors # # Successors set contributed by each marker depends on the # successors sets of all its "successors" node. # # Each different marker is a divergence in the obsolescence # history. It contributes successors sets distinct from other # markers. # # Within a marker, a successor may have divergent successors # sets. In such a case, the marker will contribute multiple # divergent successors sets. If multiple successors have # divergent successors sets, a Cartesian product is used. # # At the end we post-process successors sets to remove # duplicated entry and successors set that are strict subset of # another one. succssets = [] for mark in sorted(succmarkers[current]): # successors sets contributed by this marker markss = [[]] for suc in mark[1]: # cardinal product with previous successors productresult = [] for prefix in markss: for suffix in cache[suc]: newss = list(prefix) for part in suffix: # do not duplicated entry in successors set # first entry wins. if part not in newss: newss.append(part) productresult.append(newss) markss = productresult succssets.extend(markss) # remove duplicated and subset seen = [] final = [] candidate = sorted(((set(s), s) for s in succssets if s), key=lambda x: len(x[1]), reverse=True) for setversion, listversion in candidate: for seenset in seen: if setversion.issubset(seenset): break else: final.append(listversion) seen.append(setversion) final.reverse() # put small successors set first cache[current] = final return cache[initialnode] def _knownrevs(repo, nodes): """yield revision numbers of known nodes passed in parameters Unknown revisions are silently ignored.""" torev = repo.changelog.nodemap.get for n in nodes: rev = torev(n) if rev is not None: yield rev # mapping of 'set-name' -> <function to compute this set> cachefuncs = {} def cachefor(name): """Decorator to register a function as computing the cache for a set""" def decorator(func): assert name not in cachefuncs cachefuncs[name] = func return func return decorator def getrevs(repo, name): """Return the set of revision that belong to the <name> set Such access may compute the set and cache it for future use""" repo = repo.unfiltered() if not repo.obsstore: return () if name not in repo.obsstore.caches: repo.obsstore.caches[name] = cachefuncs[name](repo) return repo.obsstore.caches[name] # To be simple we need to invalidate obsolescence cache when: # # - new changeset is added: # - public phase is changed # - obsolescence marker are added # - strip is used a repo def clearobscaches(repo): """Remove all obsolescence related cache from a repo This remove all cache in obsstore is the obsstore already exist on the repo. (We could be smarter here given the exact event that trigger the cache clearing)""" # only clear cache is there is obsstore data in this repo if 'obsstore' in repo._filecache: repo.obsstore.caches.clear() @cachefor('obsolete') def _computeobsoleteset(repo): """the set of obsolete revisions""" obs = set() getrev = repo.changelog.nodemap.get getphase = repo._phasecache.phase for node in repo.obsstore.successors: rev = getrev(node) if rev is not None and getphase(repo, rev): obs.add(rev) return obs @cachefor('unstable') def _computeunstableset(repo): """the set of non obsolete revisions with obsolete parents""" # revset is not efficient enough here # we do (obsolete()::) - obsolete() by hand obs = getrevs(repo, 'obsolete') if not obs: return set() cl = repo.changelog return set(r for r in cl.descendants(obs) if r not in obs) @cachefor('suspended') def _computesuspendedset(repo): """the set of obsolete parents with non obsolete descendants""" suspended = repo.changelog.ancestors(getrevs(repo, 'unstable')) return set(r for r in getrevs(repo, 'obsolete') if r in suspended) @cachefor('extinct') def _computeextinctset(repo): """the set of obsolete parents without non obsolete descendants""" return getrevs(repo, 'obsolete') - getrevs(repo, 'suspended') @cachefor('bumped') def _computebumpedset(repo): """the set of revs trying to obsolete public revisions""" bumped = set() # util function (avoid attribute lookup in the loop) phase = repo._phasecache.phase # would be faster to grab the full list public = phases.public cl = repo.changelog torev = cl.nodemap.get obs = getrevs(repo, 'obsolete') for rev in repo: # We only evaluate mutable, non-obsolete revision if (public < phase(repo, rev)) and (rev not in obs): node = cl.node(rev) # (future) A cache of precursors may worth if split is very common for pnode in allprecursors(repo.obsstore, [node], ignoreflags=bumpedfix): prev = torev(pnode) # unfiltered! but so is phasecache if (prev is not None) and (phase(repo, prev) <= public): # we have a public precursors bumped.add(rev) break # Next draft! return bumped @cachefor('divergent') def _computedivergentset(repo): """the set of rev that compete to be the final successors of some revision. """ divergent = set() obsstore = repo.obsstore newermap = {} for ctx in repo.set('(not public()) - obsolete()'): mark = obsstore.precursors.get(ctx.node(), ()) toprocess = set(mark) while toprocess: prec = toprocess.pop()[0] if prec not in newermap: successorssets(repo, prec, newermap) newer = [n for n in newermap[prec] if n] if len(newer) > 1: divergent.add(ctx.rev()) break toprocess.update(obsstore.precursors.get(prec, ())) return divergent def createmarkers(repo, relations, flag=0, metadata=None): """Add obsolete markers between changesets in a repo <relations> must be an iterable of (<old>, (<new>, ...)[,{metadata}]) tuple. `old` and `news` are changectx. metadata is an optional dictionary containing metadata for this marker only. It is merged with the global metadata specified through the `metadata` argument of this function, Trying to obsolete a public changeset will raise an exception. Current user and date are used except if specified otherwise in the metadata attribute. This function operates within a transaction of its own, but does not take any lock on the repo. """ # prepare metadata if metadata is None: metadata = {} if 'date' not in metadata: metadata['date'] = '%i %i' % util.makedate() if 'user' not in metadata: metadata['user'] = repo.ui.username() tr = repo.transaction('add-obsolescence-marker') try: for rel in relations: prec = rel[0] sucs = rel[1] localmetadata = metadata.copy() if 2 < len(rel): localmetadata.update(rel[2]) if not prec.mutable(): raise util.Abort("cannot obsolete immutable changeset: %s" % prec) nprec = prec.node() nsucs = tuple(s.node() for s in sucs) if nprec in nsucs: raise util.Abort("changeset %s cannot obsolete itself" % prec) repo.obsstore.create(tr, nprec, nsucs, flag, localmetadata) repo.filteredrevcache.clear() tr.close() finally: tr.release()