view mercurial/wireprotoserver.py @ 37288:9bfcbe4f4745

wireproto: add streams to frame-based protocol Previously, the frame-based protocol was just a series of frames, with each frame associated with a request ID. In order to scale the protocol, we'll want to enable the use of compression. While it is possible to enable compression at the socket/pipe level, this has its disadvantages. The big one is it undermines the point of frames being standalone, atomic units that can be read and written: if you add compression above the framing protocol, you are back to having a stream-based protocol as opposed to something frame-based. So in order to preserve frames, compression needs to occur at the frame payload level. Compressing each frame's payload individually will limit compression ratios because the window size of the compressor will be limited by the max frame size, which is 32-64kb as currently defined. It will also add CPU overhead, as it is more efficient for compressors to operate on fewer, larger blocks of data than more, smaller blocks. So compressing each frame independently is out. This means we need to compress each frame's payload as if it is part of a larger stream. The simplest approach is to have 1 stream per connection. This could certainly work. However, it has disadvantages (documented below). We could also have 1 stream per RPC/command invocation. (This is the model HTTP/2 goes with.) This also has disadvantages. The main disadvantage to one global stream is that it has the very real potential to create CPU bottlenecks doing compression. Networks are only getting faster and the performance of single CPU cores has been relatively flat. Newer compression formats like zstandard offer better CPU cycle efficiency than predecessors like zlib. But it still all too common to saturate your CPU with compression overhead long before you saturate the network pipe. The main disadvantage with streams per request is that you can't reap the benefits of the compression context for multiple requests. For example, if you send 1000 RPC requests (or HTTP/2 requests for that matter), the response to each would have its own compression context. The overall size of the raw responses would be larger because compression contexts wouldn't be able to reference data from another request or response. The approach for streams as implemented in this commit is to support N streams per connection and for streams to potentially span requests and responses. As explained by the added internals docs, this facilitates servers and clients delegating independent streams and compression to independent threads / CPU cores. This helps alleviate the CPU bottleneck of compression. This design also allows compression contexts to be reused across requests/responses. This can result in improved compression ratios and less overhead for compressors and decompressors having to build new contexts. Another feature that was defined was the ability for individual frames within a stream to declare whether that individual frame's payload uses the content encoding (read: compression) defined by the stream. The idea here is that some servers may serve data from a combination of caches and dynamic resolution. Data coming from caches may be pre-compressed. We want to facilitate servers being able to essentially stream bytes from caches to the wire with minimal overhead. Being able to mix and match with frames are compressed within a stream enables these types of advanced server functionality. This commit defines the new streams mechanism. Basic code for supporting streams in frames has been added. But that code is seriously lacking and doesn't fully conform to the defined protocol. For example, we don't close any streams. And support for content encoding within streams is not yet implemented. The change was rather invasive and I didn't think it would be reasonable to implement the entire feature in a single commit. For the record, I would have loved to reuse an existing multiplexing protocol to build the new wire protocol on top of. However, I couldn't find a protocol that offers the performance and scaling characteristics that I desired. Namely, it should support multiple compression contexts to facilitate scaling out to multiple CPU cores and compression contexts should be able to live longer than single RPC requests. HTTP/2 *almost* fits the bill. But the semantics of HTTP message exchange state that streams can only live for a single request-response. We /could/ tunnel on top of HTTP/2 streams and frames with HEADER and DATA frames. But there's no guarantee that HTTP/2 libraries and proxies would allow us to use HTTP/2 streams and frames without the HTTP message exchange semantics defined in RFC 7540 Section 8. Other RPC protocols like gRPC tunnel are built on top of HTTP/2 and thus preserve its semantics of stream per RPC invocation. Even QUIC does this. We could attempt to invent a higher-level stream that spans HTTP/2 streams. But this would be violating HTTP/2 because there is no guarantee that HTTP/2 streams are routed to the same server. The best we can do - which is what this protocol does - is shoehorn all request and response data into a single HTTP message and create streams within. At that point, we've defined a Content-Type in HTTP parlance. It just so happens our media type can also work as a standalone, stream-based protocol, without leaning on HTTP or similar protocol. Differential Revision: https://phab.mercurial-scm.org/D2907
author Gregory Szorc <gregory.szorc@gmail.com>
date Mon, 26 Mar 2018 11:00:16 -0700
parents 3ed344546d9e
children 5fadc63ac99f
line wrap: on
line source

# Copyright 21 May 2005 - (c) 2005 Jake Edge <jake@edge2.net>
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

import contextlib
import struct
import sys
import threading

from .i18n import _
from . import (
    encoding,
    error,
    hook,
    pycompat,
    util,
    wireproto,
    wireprotoframing,
    wireprototypes,
)
from .utils import (
    procutil,
)

stringio = util.stringio

urlerr = util.urlerr
urlreq = util.urlreq

HTTP_OK = 200

HGTYPE = 'application/mercurial-0.1'
HGTYPE2 = 'application/mercurial-0.2'
HGERRTYPE = 'application/hg-error'
FRAMINGTYPE = b'application/mercurial-exp-framing-0002'

HTTPV2 = wireprototypes.HTTPV2
SSHV1 = wireprototypes.SSHV1
SSHV2 = wireprototypes.SSHV2

def decodevaluefromheaders(req, headerprefix):
    """Decode a long value from multiple HTTP request headers.

    Returns the value as a bytes, not a str.
    """
    chunks = []
    i = 1
    while True:
        v = req.headers.get(b'%s-%d' % (headerprefix, i))
        if v is None:
            break
        chunks.append(pycompat.bytesurl(v))
        i += 1

    return ''.join(chunks)

class httpv1protocolhandler(wireprototypes.baseprotocolhandler):
    def __init__(self, req, ui, checkperm):
        self._req = req
        self._ui = ui
        self._checkperm = checkperm

    @property
    def name(self):
        return 'http-v1'

    def getargs(self, args):
        knownargs = self._args()
        data = {}
        keys = args.split()
        for k in keys:
            if k == '*':
                star = {}
                for key in knownargs.keys():
                    if key != 'cmd' and key not in keys:
                        star[key] = knownargs[key][0]
                data['*'] = star
            else:
                data[k] = knownargs[k][0]
        return [data[k] for k in keys]

    def _args(self):
        args = self._req.qsparams.asdictoflists()
        postlen = int(self._req.headers.get(b'X-HgArgs-Post', 0))
        if postlen:
            args.update(urlreq.parseqs(
                self._req.bodyfh.read(postlen), keep_blank_values=True))
            return args

        argvalue = decodevaluefromheaders(self._req, b'X-HgArg')
        args.update(urlreq.parseqs(argvalue, keep_blank_values=True))
        return args

    def forwardpayload(self, fp):
        # Existing clients *always* send Content-Length.
        length = int(self._req.headers[b'Content-Length'])

        # If httppostargs is used, we need to read Content-Length
        # minus the amount that was consumed by args.
        length -= int(self._req.headers.get(b'X-HgArgs-Post', 0))
        for s in util.filechunkiter(self._req.bodyfh, limit=length):
            fp.write(s)

    @contextlib.contextmanager
    def mayberedirectstdio(self):
        oldout = self._ui.fout
        olderr = self._ui.ferr

        out = util.stringio()

        try:
            self._ui.fout = out
            self._ui.ferr = out
            yield out
        finally:
            self._ui.fout = oldout
            self._ui.ferr = olderr

    def client(self):
        return 'remote:%s:%s:%s' % (
            self._req.urlscheme,
            urlreq.quote(self._req.remotehost or ''),
            urlreq.quote(self._req.remoteuser or ''))

    def addcapabilities(self, repo, caps):
        caps.append(b'batch')

        caps.append('httpheader=%d' %
                    repo.ui.configint('server', 'maxhttpheaderlen'))
        if repo.ui.configbool('experimental', 'httppostargs'):
            caps.append('httppostargs')

        # FUTURE advertise 0.2rx once support is implemented
        # FUTURE advertise minrx and mintx after consulting config option
        caps.append('httpmediatype=0.1rx,0.1tx,0.2tx')

        compengines = wireproto.supportedcompengines(repo.ui, util.SERVERROLE)
        if compengines:
            comptypes = ','.join(urlreq.quote(e.wireprotosupport().name)
                                 for e in compengines)
            caps.append('compression=%s' % comptypes)

        return caps

    def checkperm(self, perm):
        return self._checkperm(perm)

# This method exists mostly so that extensions like remotefilelog can
# disable a kludgey legacy method only over http. As of early 2018,
# there are no other known users, so with any luck we can discard this
# hook if remotefilelog becomes a first-party extension.
def iscmd(cmd):
    return cmd in wireproto.commands

def handlewsgirequest(rctx, req, res, checkperm):
    """Possibly process a wire protocol request.

    If the current request is a wire protocol request, the request is
    processed by this function.

    ``req`` is a ``parsedrequest`` instance.
    ``res`` is a ``wsgiresponse`` instance.

    Returns a bool indicating if the request was serviced. If set, the caller
    should stop processing the request, as a response has already been issued.
    """
    # Avoid cycle involving hg module.
    from .hgweb import common as hgwebcommon

    repo = rctx.repo

    # HTTP version 1 wire protocol requests are denoted by a "cmd" query
    # string parameter. If it isn't present, this isn't a wire protocol
    # request.
    if 'cmd' not in req.qsparams:
        return False

    cmd = req.qsparams['cmd']

    # The "cmd" request parameter is used by both the wire protocol and hgweb.
    # While not all wire protocol commands are available for all transports,
    # if we see a "cmd" value that resembles a known wire protocol command, we
    # route it to a protocol handler. This is better than routing possible
    # wire protocol requests to hgweb because it prevents hgweb from using
    # known wire protocol commands and it is less confusing for machine
    # clients.
    if not iscmd(cmd):
        return False

    # The "cmd" query string argument is only valid on the root path of the
    # repo. e.g. ``/?cmd=foo``, ``/repo?cmd=foo``. URL paths within the repo
    # like ``/blah?cmd=foo`` are not allowed. So don't recognize the request
    # in this case. We send an HTTP 404 for backwards compatibility reasons.
    if req.dispatchpath:
        res.status = hgwebcommon.statusmessage(404)
        res.headers['Content-Type'] = HGTYPE
        # TODO This is not a good response to issue for this request. This
        # is mostly for BC for now.
        res.setbodybytes('0\n%s\n' % b'Not Found')
        return True

    proto = httpv1protocolhandler(req, repo.ui,
                                  lambda perm: checkperm(rctx, req, perm))

    # The permissions checker should be the only thing that can raise an
    # ErrorResponse. It is kind of a layer violation to catch an hgweb
    # exception here. So consider refactoring into a exception type that
    # is associated with the wire protocol.
    try:
        _callhttp(repo, req, res, proto, cmd)
    except hgwebcommon.ErrorResponse as e:
        for k, v in e.headers:
            res.headers[k] = v
        res.status = hgwebcommon.statusmessage(e.code, pycompat.bytestr(e))
        # TODO This response body assumes the failed command was
        # "unbundle." That assumption is not always valid.
        res.setbodybytes('0\n%s\n' % pycompat.bytestr(e))

    return True

def handlewsgiapirequest(rctx, req, res, checkperm):
    """Handle requests to /api/*."""
    assert req.dispatchparts[0] == b'api'

    repo = rctx.repo

    # This whole URL space is experimental for now. But we want to
    # reserve the URL space. So, 404 all URLs if the feature isn't enabled.
    if not repo.ui.configbool('experimental', 'web.apiserver'):
        res.status = b'404 Not Found'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('Experimental API server endpoint not enabled'))
        return

    # The URL space is /api/<protocol>/*. The structure of URLs under varies
    # by <protocol>.

    # Registered APIs are made available via config options of the name of
    # the protocol.
    availableapis = set()
    for k, v in API_HANDLERS.items():
        section, option = v['config']
        if repo.ui.configbool(section, option):
            availableapis.add(k)

    # Requests to /api/ list available APIs.
    if req.dispatchparts == [b'api']:
        res.status = b'200 OK'
        res.headers[b'Content-Type'] = b'text/plain'
        lines = [_('APIs can be accessed at /api/<name>, where <name> can be '
                   'one of the following:\n')]
        if availableapis:
            lines.extend(sorted(availableapis))
        else:
            lines.append(_('(no available APIs)\n'))
        res.setbodybytes(b'\n'.join(lines))
        return

    proto = req.dispatchparts[1]

    if proto not in API_HANDLERS:
        res.status = b'404 Not Found'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('Unknown API: %s\nKnown APIs: %s') % (
            proto, b', '.join(sorted(availableapis))))
        return

    if proto not in availableapis:
        res.status = b'404 Not Found'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('API %s not enabled\n') % proto)
        return

    API_HANDLERS[proto]['handler'](rctx, req, res, checkperm,
                                   req.dispatchparts[2:])

def _handlehttpv2request(rctx, req, res, checkperm, urlparts):
    from .hgweb import common as hgwebcommon

    # URL space looks like: <permissions>/<command>, where <permission> can
    # be ``ro`` or ``rw`` to signal read-only or read-write, respectively.

    # Root URL does nothing meaningful... yet.
    if not urlparts:
        res.status = b'200 OK'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('HTTP version 2 API handler'))
        return

    if len(urlparts) == 1:
        res.status = b'404 Not Found'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('do not know how to process %s\n') %
                         req.dispatchpath)
        return

    permission, command = urlparts[0:2]

    if permission not in (b'ro', b'rw'):
        res.status = b'404 Not Found'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('unknown permission: %s') % permission)
        return

    if req.method != 'POST':
        res.status = b'405 Method Not Allowed'
        res.headers[b'Allow'] = b'POST'
        res.setbodybytes(_('commands require POST requests'))
        return

    # At some point we'll want to use our own API instead of recycling the
    # behavior of version 1 of the wire protocol...
    # TODO return reasonable responses - not responses that overload the
    # HTTP status line message for error reporting.
    try:
        checkperm(rctx, req, 'pull' if permission == b'ro' else 'push')
    except hgwebcommon.ErrorResponse as e:
        res.status = hgwebcommon.statusmessage(e.code, pycompat.bytestr(e))
        for k, v in e.headers:
            res.headers[k] = v
        res.setbodybytes('permission denied')
        return

    # We have a special endpoint to reflect the request back at the client.
    if command == b'debugreflect':
        _processhttpv2reflectrequest(rctx.repo.ui, rctx.repo, req, res)
        return

    # Extra commands that we handle that aren't really wire protocol
    # commands. Think extra hard before making this hackery available to
    # extension.
    extracommands = {'multirequest'}

    if command not in wireproto.commands and command not in extracommands:
        res.status = b'404 Not Found'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('unknown wire protocol command: %s\n') % command)
        return

    repo = rctx.repo
    ui = repo.ui

    proto = httpv2protocolhandler(req, ui)

    if (not wireproto.commands.commandavailable(command, proto)
        and command not in extracommands):
        res.status = b'404 Not Found'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('invalid wire protocol command: %s') % command)
        return

    # TODO consider cases where proxies may add additional Accept headers.
    if req.headers.get(b'Accept') != FRAMINGTYPE:
        res.status = b'406 Not Acceptable'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('client MUST specify Accept header with value: %s\n')
                           % FRAMINGTYPE)
        return

    if req.headers.get(b'Content-Type') != FRAMINGTYPE:
        res.status = b'415 Unsupported Media Type'
        # TODO we should send a response with appropriate media type,
        # since client does Accept it.
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('client MUST send Content-Type header with '
                           'value: %s\n') % FRAMINGTYPE)
        return

    _processhttpv2request(ui, repo, req, res, permission, command, proto)

def _processhttpv2reflectrequest(ui, repo, req, res):
    """Reads unified frame protocol request and dumps out state to client.

    This special endpoint can be used to help debug the wire protocol.

    Instead of routing the request through the normal dispatch mechanism,
    we instead read all frames, decode them, and feed them into our state
    tracker. We then dump the log of all that activity back out to the
    client.
    """
    import json

    # Reflection APIs have a history of being abused, accidentally disclosing
    # sensitive data, etc. So we have a config knob.
    if not ui.configbool('experimental', 'web.api.debugreflect'):
        res.status = b'404 Not Found'
        res.headers[b'Content-Type'] = b'text/plain'
        res.setbodybytes(_('debugreflect service not available'))
        return

    # We assume we have a unified framing protocol request body.

    reactor = wireprotoframing.serverreactor()
    states = []

    while True:
        frame = wireprotoframing.readframe(req.bodyfh)

        if not frame:
            states.append(b'received: <no frame>')
            break

        states.append(b'received: %d %d %d %s' % (frame.typeid, frame.flags,
                                                  frame.requestid,
                                                  frame.payload))

        action, meta = reactor.onframerecv(frame)
        states.append(json.dumps((action, meta), sort_keys=True,
                                 separators=(', ', ': ')))

    action, meta = reactor.oninputeof()
    meta['action'] = action
    states.append(json.dumps(meta, sort_keys=True, separators=(', ',': ')))

    res.status = b'200 OK'
    res.headers[b'Content-Type'] = b'text/plain'
    res.setbodybytes(b'\n'.join(states))

def _processhttpv2request(ui, repo, req, res, authedperm, reqcommand, proto):
    """Post-validation handler for HTTPv2 requests.

    Called when the HTTP request contains unified frame-based protocol
    frames for evaluation.
    """
    # TODO Some HTTP clients are full duplex and can receive data before
    # the entire request is transmitted. Figure out a way to indicate support
    # for that so we can opt into full duplex mode.
    reactor = wireprotoframing.serverreactor(deferoutput=True)
    seencommand = False

    while True:
        frame = wireprotoframing.readframe(req.bodyfh)
        if not frame:
            break

        action, meta = reactor.onframerecv(frame)

        if action == 'wantframe':
            # Need more data before we can do anything.
            continue
        elif action == 'runcommand':
            sentoutput = _httpv2runcommand(ui, repo, req, res, authedperm,
                                           reqcommand, reactor, meta,
                                           issubsequent=seencommand)

            if sentoutput:
                return

            seencommand = True

        elif action == 'error':
            # TODO define proper error mechanism.
            res.status = b'200 OK'
            res.headers[b'Content-Type'] = b'text/plain'
            res.setbodybytes(meta['message'] + b'\n')
            return
        else:
            raise error.ProgrammingError(
                'unhandled action from frame processor: %s' % action)

    action, meta = reactor.oninputeof()
    if action == 'sendframes':
        # We assume we haven't started sending the response yet. If we're
        # wrong, the response type will raise an exception.
        res.status = b'200 OK'
        res.headers[b'Content-Type'] = FRAMINGTYPE
        res.setbodygen(meta['framegen'])
    elif action == 'noop':
        pass
    else:
        raise error.ProgrammingError('unhandled action from frame processor: %s'
                                     % action)

def _httpv2runcommand(ui, repo, req, res, authedperm, reqcommand, reactor,
                      command, issubsequent):
    """Dispatch a wire protocol command made from HTTPv2 requests.

    The authenticated permission (``authedperm``) along with the original
    command from the URL (``reqcommand``) are passed in.
    """
    # We already validated that the session has permissions to perform the
    # actions in ``authedperm``. In the unified frame protocol, the canonical
    # command to run is expressed in a frame. However, the URL also requested
    # to run a specific command. We need to be careful that the command we
    # run doesn't have permissions requirements greater than what was granted
    # by ``authedperm``.
    #
    # Our rule for this is we only allow one command per HTTP request and
    # that command must match the command in the URL. However, we make
    # an exception for the ``multirequest`` URL. This URL is allowed to
    # execute multiple commands. We double check permissions of each command
    # as it is invoked to ensure there is no privilege escalation.
    # TODO consider allowing multiple commands to regular command URLs
    # iff each command is the same.

    proto = httpv2protocolhandler(req, ui, args=command['args'])

    if reqcommand == b'multirequest':
        if not wireproto.commands.commandavailable(command['command'], proto):
            # TODO proper error mechanism
            res.status = b'200 OK'
            res.headers[b'Content-Type'] = b'text/plain'
            res.setbodybytes(_('wire protocol command not available: %s') %
                             command['command'])
            return True

        # TODO don't use assert here, since it may be elided by -O.
        assert authedperm in (b'ro', b'rw')
        wirecommand = wireproto.commands[command['command']]
        assert wirecommand.permission in ('push', 'pull')

        if authedperm == b'ro' and wirecommand.permission != 'pull':
            # TODO proper error mechanism
            res.status = b'403 Forbidden'
            res.headers[b'Content-Type'] = b'text/plain'
            res.setbodybytes(_('insufficient permissions to execute '
                               'command: %s') % command['command'])
            return True

        # TODO should we also call checkperm() here? Maybe not if we're going
        # to overhaul that API. The granted scope from the URL check should
        # be good enough.

    else:
        # Don't allow multiple commands outside of ``multirequest`` URL.
        if issubsequent:
            # TODO proper error mechanism
            res.status = b'200 OK'
            res.headers[b'Content-Type'] = b'text/plain'
            res.setbodybytes(_('multiple commands cannot be issued to this '
                               'URL'))
            return True

        if reqcommand != command['command']:
            # TODO define proper error mechanism
            res.status = b'200 OK'
            res.headers[b'Content-Type'] = b'text/plain'
            res.setbodybytes(_('command in frame must match command in URL'))
            return True

    rsp = wireproto.dispatch(repo, proto, command['command'])

    res.status = b'200 OK'
    res.headers[b'Content-Type'] = FRAMINGTYPE
    stream = wireprotoframing.stream(2)

    if isinstance(rsp, wireprototypes.bytesresponse):
        action, meta = reactor.onbytesresponseready(stream,
                                                    command['requestid'],
                                                    rsp.data)
    else:
        action, meta = reactor.onapplicationerror(
            _('unhandled response type from wire proto command'))

    if action == 'sendframes':
        res.setbodygen(meta['framegen'])
        return True
    elif action == 'noop':
        return False
    else:
        raise error.ProgrammingError('unhandled event from reactor: %s' %
                                     action)

# Maps API name to metadata so custom API can be registered.
API_HANDLERS = {
    HTTPV2: {
        'config': ('experimental', 'web.api.http-v2'),
        'handler': _handlehttpv2request,
    },
}

class httpv2protocolhandler(wireprototypes.baseprotocolhandler):
    def __init__(self, req, ui, args=None):
        self._req = req
        self._ui = ui
        self._args = args

    @property
    def name(self):
        return HTTPV2

    def getargs(self, args):
        data = {}
        for k in args.split():
            if k == '*':
                raise NotImplementedError('do not support * args')
            else:
                data[k] = self._args[k]

        return [data[k] for k in args.split()]

    def forwardpayload(self, fp):
        raise NotImplementedError

    @contextlib.contextmanager
    def mayberedirectstdio(self):
        raise NotImplementedError

    def client(self):
        raise NotImplementedError

    def addcapabilities(self, repo, caps):
        return caps

    def checkperm(self, perm):
        raise NotImplementedError

def _httpresponsetype(ui, req, prefer_uncompressed):
    """Determine the appropriate response type and compression settings.

    Returns a tuple of (mediatype, compengine, engineopts).
    """
    # Determine the response media type and compression engine based
    # on the request parameters.
    protocaps = decodevaluefromheaders(req, 'X-HgProto').split(' ')

    if '0.2' in protocaps:
        # All clients are expected to support uncompressed data.
        if prefer_uncompressed:
            return HGTYPE2, util._noopengine(), {}

        # Default as defined by wire protocol spec.
        compformats = ['zlib', 'none']
        for cap in protocaps:
            if cap.startswith('comp='):
                compformats = cap[5:].split(',')
                break

        # Now find an agreed upon compression format.
        for engine in wireproto.supportedcompengines(ui, util.SERVERROLE):
            if engine.wireprotosupport().name in compformats:
                opts = {}
                level = ui.configint('server', '%slevel' % engine.name())
                if level is not None:
                    opts['level'] = level

                return HGTYPE2, engine, opts

        # No mutually supported compression format. Fall back to the
        # legacy protocol.

    # Don't allow untrusted settings because disabling compression or
    # setting a very high compression level could lead to flooding
    # the server's network or CPU.
    opts = {'level': ui.configint('server', 'zliblevel')}
    return HGTYPE, util.compengines['zlib'], opts

def _callhttp(repo, req, res, proto, cmd):
    # Avoid cycle involving hg module.
    from .hgweb import common as hgwebcommon

    def genversion2(gen, engine, engineopts):
        # application/mercurial-0.2 always sends a payload header
        # identifying the compression engine.
        name = engine.wireprotosupport().name
        assert 0 < len(name) < 256
        yield struct.pack('B', len(name))
        yield name

        for chunk in gen:
            yield chunk

    def setresponse(code, contenttype, bodybytes=None, bodygen=None):
        if code == HTTP_OK:
            res.status = '200 Script output follows'
        else:
            res.status = hgwebcommon.statusmessage(code)

        res.headers['Content-Type'] = contenttype

        if bodybytes is not None:
            res.setbodybytes(bodybytes)
        if bodygen is not None:
            res.setbodygen(bodygen)

    if not wireproto.commands.commandavailable(cmd, proto):
        setresponse(HTTP_OK, HGERRTYPE,
                    _('requested wire protocol command is not available over '
                      'HTTP'))
        return

    proto.checkperm(wireproto.commands[cmd].permission)

    rsp = wireproto.dispatch(repo, proto, cmd)

    if isinstance(rsp, bytes):
        setresponse(HTTP_OK, HGTYPE, bodybytes=rsp)
    elif isinstance(rsp, wireprototypes.bytesresponse):
        setresponse(HTTP_OK, HGTYPE, bodybytes=rsp.data)
    elif isinstance(rsp, wireprototypes.streamreslegacy):
        setresponse(HTTP_OK, HGTYPE, bodygen=rsp.gen)
    elif isinstance(rsp, wireprototypes.streamres):
        gen = rsp.gen

        # This code for compression should not be streamres specific. It
        # is here because we only compress streamres at the moment.
        mediatype, engine, engineopts = _httpresponsetype(
            repo.ui, req, rsp.prefer_uncompressed)
        gen = engine.compressstream(gen, engineopts)

        if mediatype == HGTYPE2:
            gen = genversion2(gen, engine, engineopts)

        setresponse(HTTP_OK, mediatype, bodygen=gen)
    elif isinstance(rsp, wireprototypes.pushres):
        rsp = '%d\n%s' % (rsp.res, rsp.output)
        setresponse(HTTP_OK, HGTYPE, bodybytes=rsp)
    elif isinstance(rsp, wireprototypes.pusherr):
        rsp = '0\n%s\n' % rsp.res
        res.drain = True
        setresponse(HTTP_OK, HGTYPE, bodybytes=rsp)
    elif isinstance(rsp, wireprototypes.ooberror):
        setresponse(HTTP_OK, HGERRTYPE, bodybytes=rsp.message)
    else:
        raise error.ProgrammingError('hgweb.protocol internal failure', rsp)

def _sshv1respondbytes(fout, value):
    """Send a bytes response for protocol version 1."""
    fout.write('%d\n' % len(value))
    fout.write(value)
    fout.flush()

def _sshv1respondstream(fout, source):
    write = fout.write
    for chunk in source.gen:
        write(chunk)
    fout.flush()

def _sshv1respondooberror(fout, ferr, rsp):
    ferr.write(b'%s\n-\n' % rsp)
    ferr.flush()
    fout.write(b'\n')
    fout.flush()

class sshv1protocolhandler(wireprototypes.baseprotocolhandler):
    """Handler for requests services via version 1 of SSH protocol."""
    def __init__(self, ui, fin, fout):
        self._ui = ui
        self._fin = fin
        self._fout = fout

    @property
    def name(self):
        return wireprototypes.SSHV1

    def getargs(self, args):
        data = {}
        keys = args.split()
        for n in xrange(len(keys)):
            argline = self._fin.readline()[:-1]
            arg, l = argline.split()
            if arg not in keys:
                raise error.Abort(_("unexpected parameter %r") % arg)
            if arg == '*':
                star = {}
                for k in xrange(int(l)):
                    argline = self._fin.readline()[:-1]
                    arg, l = argline.split()
                    val = self._fin.read(int(l))
                    star[arg] = val
                data['*'] = star
            else:
                val = self._fin.read(int(l))
                data[arg] = val
        return [data[k] for k in keys]

    def forwardpayload(self, fpout):
        # We initially send an empty response. This tells the client it is
        # OK to start sending data. If a client sees any other response, it
        # interprets it as an error.
        _sshv1respondbytes(self._fout, b'')

        # The file is in the form:
        #
        # <chunk size>\n<chunk>
        # ...
        # 0\n
        count = int(self._fin.readline())
        while count:
            fpout.write(self._fin.read(count))
            count = int(self._fin.readline())

    @contextlib.contextmanager
    def mayberedirectstdio(self):
        yield None

    def client(self):
        client = encoding.environ.get('SSH_CLIENT', '').split(' ', 1)[0]
        return 'remote:ssh:' + client

    def addcapabilities(self, repo, caps):
        caps.append(b'batch')
        return caps

    def checkperm(self, perm):
        pass

class sshv2protocolhandler(sshv1protocolhandler):
    """Protocol handler for version 2 of the SSH protocol."""

    @property
    def name(self):
        return wireprototypes.SSHV2

def _runsshserver(ui, repo, fin, fout, ev):
    # This function operates like a state machine of sorts. The following
    # states are defined:
    #
    # protov1-serving
    #    Server is in protocol version 1 serving mode. Commands arrive on
    #    new lines. These commands are processed in this state, one command
    #    after the other.
    #
    # protov2-serving
    #    Server is in protocol version 2 serving mode.
    #
    # upgrade-initial
    #    The server is going to process an upgrade request.
    #
    # upgrade-v2-filter-legacy-handshake
    #    The protocol is being upgraded to version 2. The server is expecting
    #    the legacy handshake from version 1.
    #
    # upgrade-v2-finish
    #    The upgrade to version 2 of the protocol is imminent.
    #
    # shutdown
    #    The server is shutting down, possibly in reaction to a client event.
    #
    # And here are their transitions:
    #
    # protov1-serving -> shutdown
    #    When server receives an empty request or encounters another
    #    error.
    #
    # protov1-serving -> upgrade-initial
    #    An upgrade request line was seen.
    #
    # upgrade-initial -> upgrade-v2-filter-legacy-handshake
    #    Upgrade to version 2 in progress. Server is expecting to
    #    process a legacy handshake.
    #
    # upgrade-v2-filter-legacy-handshake -> shutdown
    #    Client did not fulfill upgrade handshake requirements.
    #
    # upgrade-v2-filter-legacy-handshake -> upgrade-v2-finish
    #    Client fulfilled version 2 upgrade requirements. Finishing that
    #    upgrade.
    #
    # upgrade-v2-finish -> protov2-serving
    #    Protocol upgrade to version 2 complete. Server can now speak protocol
    #    version 2.
    #
    # protov2-serving -> protov1-serving
    #    Ths happens by default since protocol version 2 is the same as
    #    version 1 except for the handshake.

    state = 'protov1-serving'
    proto = sshv1protocolhandler(ui, fin, fout)
    protoswitched = False

    while not ev.is_set():
        if state == 'protov1-serving':
            # Commands are issued on new lines.
            request = fin.readline()[:-1]

            # Empty lines signal to terminate the connection.
            if not request:
                state = 'shutdown'
                continue

            # It looks like a protocol upgrade request. Transition state to
            # handle it.
            if request.startswith(b'upgrade '):
                if protoswitched:
                    _sshv1respondooberror(fout, ui.ferr,
                                          b'cannot upgrade protocols multiple '
                                          b'times')
                    state = 'shutdown'
                    continue

                state = 'upgrade-initial'
                continue

            available = wireproto.commands.commandavailable(request, proto)

            # This command isn't available. Send an empty response and go
            # back to waiting for a new command.
            if not available:
                _sshv1respondbytes(fout, b'')
                continue

            rsp = wireproto.dispatch(repo, proto, request)

            if isinstance(rsp, bytes):
                _sshv1respondbytes(fout, rsp)
            elif isinstance(rsp, wireprototypes.bytesresponse):
                _sshv1respondbytes(fout, rsp.data)
            elif isinstance(rsp, wireprototypes.streamres):
                _sshv1respondstream(fout, rsp)
            elif isinstance(rsp, wireprototypes.streamreslegacy):
                _sshv1respondstream(fout, rsp)
            elif isinstance(rsp, wireprototypes.pushres):
                _sshv1respondbytes(fout, b'')
                _sshv1respondbytes(fout, b'%d' % rsp.res)
            elif isinstance(rsp, wireprototypes.pusherr):
                _sshv1respondbytes(fout, rsp.res)
            elif isinstance(rsp, wireprototypes.ooberror):
                _sshv1respondooberror(fout, ui.ferr, rsp.message)
            else:
                raise error.ProgrammingError('unhandled response type from '
                                             'wire protocol command: %s' % rsp)

        # For now, protocol version 2 serving just goes back to version 1.
        elif state == 'protov2-serving':
            state = 'protov1-serving'
            continue

        elif state == 'upgrade-initial':
            # We should never transition into this state if we've switched
            # protocols.
            assert not protoswitched
            assert proto.name == wireprototypes.SSHV1

            # Expected: upgrade <token> <capabilities>
            # If we get something else, the request is malformed. It could be
            # from a future client that has altered the upgrade line content.
            # We treat this as an unknown command.
            try:
                token, caps = request.split(b' ')[1:]
            except ValueError:
                _sshv1respondbytes(fout, b'')
                state = 'protov1-serving'
                continue

            # Send empty response if we don't support upgrading protocols.
            if not ui.configbool('experimental', 'sshserver.support-v2'):
                _sshv1respondbytes(fout, b'')
                state = 'protov1-serving'
                continue

            try:
                caps = urlreq.parseqs(caps)
            except ValueError:
                _sshv1respondbytes(fout, b'')
                state = 'protov1-serving'
                continue

            # We don't see an upgrade request to protocol version 2. Ignore
            # the upgrade request.
            wantedprotos = caps.get(b'proto', [b''])[0]
            if SSHV2 not in wantedprotos:
                _sshv1respondbytes(fout, b'')
                state = 'protov1-serving'
                continue

            # It looks like we can honor this upgrade request to protocol 2.
            # Filter the rest of the handshake protocol request lines.
            state = 'upgrade-v2-filter-legacy-handshake'
            continue

        elif state == 'upgrade-v2-filter-legacy-handshake':
            # Client should have sent legacy handshake after an ``upgrade``
            # request. Expected lines:
            #
            #    hello
            #    between
            #    pairs 81
            #    0000...-0000...

            ok = True
            for line in (b'hello', b'between', b'pairs 81'):
                request = fin.readline()[:-1]

                if request != line:
                    _sshv1respondooberror(fout, ui.ferr,
                                          b'malformed handshake protocol: '
                                          b'missing %s' % line)
                    ok = False
                    state = 'shutdown'
                    break

            if not ok:
                continue

            request = fin.read(81)
            if request != b'%s-%s' % (b'0' * 40, b'0' * 40):
                _sshv1respondooberror(fout, ui.ferr,
                                      b'malformed handshake protocol: '
                                      b'missing between argument value')
                state = 'shutdown'
                continue

            state = 'upgrade-v2-finish'
            continue

        elif state == 'upgrade-v2-finish':
            # Send the upgrade response.
            fout.write(b'upgraded %s %s\n' % (token, SSHV2))
            servercaps = wireproto.capabilities(repo, proto)
            rsp = b'capabilities: %s' % servercaps.data
            fout.write(b'%d\n%s\n' % (len(rsp), rsp))
            fout.flush()

            proto = sshv2protocolhandler(ui, fin, fout)
            protoswitched = True

            state = 'protov2-serving'
            continue

        elif state == 'shutdown':
            break

        else:
            raise error.ProgrammingError('unhandled ssh server state: %s' %
                                         state)

class sshserver(object):
    def __init__(self, ui, repo, logfh=None):
        self._ui = ui
        self._repo = repo
        self._fin = ui.fin
        self._fout = ui.fout

        # Log write I/O to stdout and stderr if configured.
        if logfh:
            self._fout = util.makeloggingfileobject(
                logfh, self._fout, 'o', logdata=True)
            ui.ferr = util.makeloggingfileobject(
                logfh, ui.ferr, 'e', logdata=True)

        hook.redirect(True)
        ui.fout = repo.ui.fout = ui.ferr

        # Prevent insertion/deletion of CRs
        procutil.setbinary(self._fin)
        procutil.setbinary(self._fout)

    def serve_forever(self):
        self.serveuntil(threading.Event())
        sys.exit(0)

    def serveuntil(self, ev):
        """Serve until a threading.Event is set."""
        _runsshserver(self._ui, self._repo, self._fin, self._fout, ev)