view tests/tinyproxy.py @ 24787:9d5c27890790

largefiles: for update -C, only update largefiles when necessary Before, a --clean update with largefiles would use the "optimization" that it didn't read hashes from standin files before and after the update. Instead of trusting the content of the standin files, it would rehash all the actual largefiles that lfdirstate reported clean and update the standins that didn't have the expected content. It could thus in some "impossible" situations automatically recover from some "largefile got out sync with its standin" issues (even there apparently still were weird corner cases where it could fail). This extra checking is similar to what core --clean intentionally do not do, and it made update --clean unbearable slow. Usually in core Mercurial, --clean will rely on the dirstate to find the files it should update. (It is thus intentionally possible (when trying to trick the system or if there should be bugs) to end up in situations where --clean not will restore the working directory content correctly.) Checking every file when we "know" it is ok is however not an option - that would be too slow. Instead, trust the content of the standin files. Use the same logic for --clean as for linear updates and trust the dirstate and that our "logic" will keep them in sync. It is much cheaper to just rehash the largefiles reported dirty by a status walk and read all standins than to hash largefiles. Most of the changes are just a change of indentation now when the different kinds of updates no longer are handled that differently. Standins for added files are however only written when doing a normal update, while deleted and removed files only will be updated for --clean updates.
author Mads Kiilerich <madski@unity3d.com>
date Wed, 15 Apr 2015 15:22:16 -0400
parents ca430fb6a668
children 328739ea70c3
line wrap: on
line source

#!/usr/bin/env python

__doc__ = """Tiny HTTP Proxy.

This module implements GET, HEAD, POST, PUT and DELETE methods
on BaseHTTPServer, and behaves as an HTTP proxy.  The CONNECT
method is also implemented experimentally, but has not been
tested yet.

Any help will be greatly appreciated.           SUZUKI Hisao
"""

__version__ = "0.2.1"

import BaseHTTPServer, select, socket, SocketServer, urlparse, os

class ProxyHandler (BaseHTTPServer.BaseHTTPRequestHandler):
    __base = BaseHTTPServer.BaseHTTPRequestHandler
    __base_handle = __base.handle

    server_version = "TinyHTTPProxy/" + __version__
    rbufsize = 0                        # self.rfile Be unbuffered

    def handle(self):
        (ip, port) =  self.client_address
        allowed = getattr(self, 'allowed_clients', None)
        if allowed is not None and ip not in allowed:
            self.raw_requestline = self.rfile.readline()
            if self.parse_request():
                self.send_error(403)
        else:
            self.__base_handle()

    def log_request(self, code='-', size='-'):
        xheaders = [h for h in self.headers.items() if h[0].startswith('x-')]
        self.log_message('"%s" %s %s%s',
                         self.requestline, str(code), str(size),
                         ''.join([' %s:%s' % h for h in sorted(xheaders)]))

    def _connect_to(self, netloc, soc):
        i = netloc.find(':')
        if i >= 0:
            host_port = netloc[:i], int(netloc[i + 1:])
        else:
            host_port = netloc, 80
        print "\t" "connect to %s:%d" % host_port
        try: soc.connect(host_port)
        except socket.error, arg:
            try: msg = arg[1]
            except (IndexError, TypeError): msg = arg
            self.send_error(404, msg)
            return 0
        return 1

    def do_CONNECT(self):
        soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        try:
            if self._connect_to(self.path, soc):
                self.log_request(200)
                self.wfile.write(self.protocol_version +
                                 " 200 Connection established\r\n")
                self.wfile.write("Proxy-agent: %s\r\n" % self.version_string())
                self.wfile.write("\r\n")
                self._read_write(soc, 300)
        finally:
            print "\t" "bye"
            soc.close()
            self.connection.close()

    def do_GET(self):
        (scm, netloc, path, params, query, fragment) = urlparse.urlparse(
            self.path, 'http')
        if scm != 'http' or fragment or not netloc:
            self.send_error(400, "bad url %s" % self.path)
            return
        soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        try:
            if self._connect_to(netloc, soc):
                self.log_request()
                soc.send("%s %s %s\r\n" % (
                    self.command,
                    urlparse.urlunparse(('', '', path, params, query, '')),
                    self.request_version))
                self.headers['Connection'] = 'close'
                del self.headers['Proxy-Connection']
                for key_val in self.headers.items():
                    soc.send("%s: %s\r\n" % key_val)
                soc.send("\r\n")
                self._read_write(soc)
        finally:
            print "\t" "bye"
            soc.close()
            self.connection.close()

    def _read_write(self, soc, max_idling=20):
        iw = [self.connection, soc]
        ow = []
        count = 0
        while True:
            count += 1
            (ins, _, exs) = select.select(iw, ow, iw, 3)
            if exs:
                break
            if ins:
                for i in ins:
                    if i is soc:
                        out = self.connection
                    else:
                        out = soc
                    try:
                        data = i.recv(8192)
                    except socket.error:
                        break
                    if data:
                        out.send(data)
                        count = 0
            else:
                print "\t" "idle", count
            if count == max_idling:
                break

    do_HEAD = do_GET
    do_POST = do_GET
    do_PUT  = do_GET
    do_DELETE = do_GET

class ThreadingHTTPServer (SocketServer.ThreadingMixIn,
                           BaseHTTPServer.HTTPServer):
    def __init__(self, *args, **kwargs):
        BaseHTTPServer.HTTPServer.__init__(self, *args, **kwargs)
        a = open("proxy.pid", "w")
        a.write(str(os.getpid()) + "\n")
        a.close()

if __name__ == '__main__':
    from sys import argv
    if argv[1:] and argv[1] in ('-h', '--help'):
        print argv[0], "[port [allowed_client_name ...]]"
    else:
        if argv[2:]:
            allowed = []
            for name in argv[2:]:
                client = socket.gethostbyname(name)
                allowed.append(client)
                print "Accept: %s (%s)" % (client, name)
            ProxyHandler.allowed_clients = allowed
            del argv[2:]
        else:
            print "Any clients will be served..."
        BaseHTTPServer.test(ProxyHandler, ThreadingHTTPServer)