view tests/tinyproxy.py @ 24545:9e0c67e84896

json: implement {tags} template Tags is pretty easy to implement. Let's start there. The output is slightly different from `hg tags -Tjson`. For reference, the CLI has the following output: [ { "node": "e2049974f9a23176c2addb61d8f5b86e0d620490", "rev": 29880, "tag": "tip", "type": "" }, ... ] Our output has the format: { "node": "0aeb19ea57a6d223bacddda3871cb78f24b06510", "tags": [ { "node": "e2049974f9a23176c2addb61d8f5b86e0d620490", "tag": "tag1", "date": [1427775457.0, 25200] }, ... ] } "rev" is omitted because it isn't a reliable identifier. We shouldn't be exposing them in web APIs and giving the impression it remotely resembles a stable identifier. Perhaps we could one day hide this behind a config option (it might be useful to expose when running servers locally). The "type" of the tag isn't defined because this information isn't yet exposed to the hgweb templater (it could be in a follow-up) and because it is questionable whether different types should be exposed at all. (Should the web interface really be exposing "local" tags?) We use an object for the outer type instead of Array for a few reasons. First, it is extensible. If we ever need to throw more global properties into the output, we can do that without breaking backwards compatibility (property additions should be backwards compatible). Second, uniformity in web APIs is nice. Having everything return objects seems much saner than a mix of array and object. Third, there are security issues with arrays in older browsers. The JSON web services world almost never uses arrays as the main type for this reason. Another possibly controversial part about this patch is how dates are defined. While JSON has a Date type, it is based on the JavaScript Date type, which is widely considered a pile of garbage. It is a non-starter for this reason. Many of Mercurial's built-in date filters drop seconds resolution. So that's a non-starter as well, since we want the API to be lossless where possible. rfc3339date, rfc822date, isodatesec, and date are all lossless. However, they each require the client to perform string parsing on top of JSON decoding. While date parsing libraries are pretty ubiquitous, some languages don't have them out of the box. However, pretty much every programming language can deal with UNIX timestamps (which are just integers or floats). So, we choose to use Mercurial's internal date representation, which in JSON is modeled as float seconds since UNIX epoch and an integer timezone offset from UTC (keep in mind JavaScript/JSON models all "Numbers" as double prevision floating point numbers, so there isn't a difference between ints and floats in JSON).
author Gregory Szorc <gregory.szorc@gmail.com>
date Tue, 31 Mar 2015 14:52:21 -0700
parents ca430fb6a668
children 328739ea70c3
line wrap: on
line source

#!/usr/bin/env python

__doc__ = """Tiny HTTP Proxy.

This module implements GET, HEAD, POST, PUT and DELETE methods
on BaseHTTPServer, and behaves as an HTTP proxy.  The CONNECT
method is also implemented experimentally, but has not been
tested yet.

Any help will be greatly appreciated.           SUZUKI Hisao
"""

__version__ = "0.2.1"

import BaseHTTPServer, select, socket, SocketServer, urlparse, os

class ProxyHandler (BaseHTTPServer.BaseHTTPRequestHandler):
    __base = BaseHTTPServer.BaseHTTPRequestHandler
    __base_handle = __base.handle

    server_version = "TinyHTTPProxy/" + __version__
    rbufsize = 0                        # self.rfile Be unbuffered

    def handle(self):
        (ip, port) =  self.client_address
        allowed = getattr(self, 'allowed_clients', None)
        if allowed is not None and ip not in allowed:
            self.raw_requestline = self.rfile.readline()
            if self.parse_request():
                self.send_error(403)
        else:
            self.__base_handle()

    def log_request(self, code='-', size='-'):
        xheaders = [h for h in self.headers.items() if h[0].startswith('x-')]
        self.log_message('"%s" %s %s%s',
                         self.requestline, str(code), str(size),
                         ''.join([' %s:%s' % h for h in sorted(xheaders)]))

    def _connect_to(self, netloc, soc):
        i = netloc.find(':')
        if i >= 0:
            host_port = netloc[:i], int(netloc[i + 1:])
        else:
            host_port = netloc, 80
        print "\t" "connect to %s:%d" % host_port
        try: soc.connect(host_port)
        except socket.error, arg:
            try: msg = arg[1]
            except (IndexError, TypeError): msg = arg
            self.send_error(404, msg)
            return 0
        return 1

    def do_CONNECT(self):
        soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        try:
            if self._connect_to(self.path, soc):
                self.log_request(200)
                self.wfile.write(self.protocol_version +
                                 " 200 Connection established\r\n")
                self.wfile.write("Proxy-agent: %s\r\n" % self.version_string())
                self.wfile.write("\r\n")
                self._read_write(soc, 300)
        finally:
            print "\t" "bye"
            soc.close()
            self.connection.close()

    def do_GET(self):
        (scm, netloc, path, params, query, fragment) = urlparse.urlparse(
            self.path, 'http')
        if scm != 'http' or fragment or not netloc:
            self.send_error(400, "bad url %s" % self.path)
            return
        soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        try:
            if self._connect_to(netloc, soc):
                self.log_request()
                soc.send("%s %s %s\r\n" % (
                    self.command,
                    urlparse.urlunparse(('', '', path, params, query, '')),
                    self.request_version))
                self.headers['Connection'] = 'close'
                del self.headers['Proxy-Connection']
                for key_val in self.headers.items():
                    soc.send("%s: %s\r\n" % key_val)
                soc.send("\r\n")
                self._read_write(soc)
        finally:
            print "\t" "bye"
            soc.close()
            self.connection.close()

    def _read_write(self, soc, max_idling=20):
        iw = [self.connection, soc]
        ow = []
        count = 0
        while True:
            count += 1
            (ins, _, exs) = select.select(iw, ow, iw, 3)
            if exs:
                break
            if ins:
                for i in ins:
                    if i is soc:
                        out = self.connection
                    else:
                        out = soc
                    try:
                        data = i.recv(8192)
                    except socket.error:
                        break
                    if data:
                        out.send(data)
                        count = 0
            else:
                print "\t" "idle", count
            if count == max_idling:
                break

    do_HEAD = do_GET
    do_POST = do_GET
    do_PUT  = do_GET
    do_DELETE = do_GET

class ThreadingHTTPServer (SocketServer.ThreadingMixIn,
                           BaseHTTPServer.HTTPServer):
    def __init__(self, *args, **kwargs):
        BaseHTTPServer.HTTPServer.__init__(self, *args, **kwargs)
        a = open("proxy.pid", "w")
        a.write(str(os.getpid()) + "\n")
        a.close()

if __name__ == '__main__':
    from sys import argv
    if argv[1:] and argv[1] in ('-h', '--help'):
        print argv[0], "[port [allowed_client_name ...]]"
    else:
        if argv[2:]:
            allowed = []
            for name in argv[2:]:
                client = socket.gethostbyname(name)
                allowed.append(client)
                print "Accept: %s (%s)" % (client, name)
            ProxyHandler.allowed_clients = allowed
            del argv[2:]
        else:
            print "Any clients will be served..."
        BaseHTTPServer.test(ProxyHandler, ThreadingHTTPServer)