view contrib/perf-utils/perf-revlog-write-plot.py @ 42160:9e40c5892714

chistedit: use context manager to set verbose ui I'm still not exactly sure why this is necessary -- perhaps setting it unconditionally would leak this setting in chg invocations. Regardless, this would have looked very out of place as compared to how this setting is done everywhere else, so at least for the sake of style, let's be consistent with the rest of the codebase.
author Jordi Gutiérrez Hermoso <jordigh@octave.org>
date Tue, 16 Apr 2019 13:12:21 -0400
parents c3e5ce3a9483
children 2372284d9457
line wrap: on
line source

#!/usr/bin/env python
#
#  Copyright 2018 Paul Morelle <Paul.Morelle@octobus.net>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
#
# This script use the output of `hg perfrevlogwrite -T json --details` to draw
# various plot related to write performance in a revlog
#
# usage: perf-revlog-write-plot.py details.json
from __future__ import absolute_import, print_function
import json
import re

import numpy as np
import scipy.signal

from matplotlib import (
    pyplot as plt,
    ticker as mticker,
)


def plot(data, title=None):
    items = {}
    re_title = re.compile(r'^revisions #\d+ of \d+, rev (\d+)$')
    for item in data:
        m = re_title.match(item['title'])
        if m is None:
            continue

        rev = int(m.group(1))
        items[rev] = item

    min_rev = min(items.keys())
    max_rev = max(items.keys())
    ary = np.empty((2, max_rev - min_rev + 1))
    for rev, item in items.items():
        ary[0][rev - min_rev] = rev
        ary[1][rev - min_rev] = item['wall']

    fig = plt.figure()
    comb_plt = fig.add_subplot(211)
    other_plt = fig.add_subplot(212)

    comb_plt.plot(ary[0],
                  np.cumsum(ary[1]),
                  color='red',
                  linewidth=1,
                  label='comb')

    plots = []
    p = other_plt.plot(ary[0],
                       ary[1],
                       color='red',
                       linewidth=1,
                       label='wall')
    plots.append(p)

    colors = {
        10: ('green', 'xkcd:grass green'),
        100: ('blue', 'xkcd:bright blue'),
        1000: ('purple', 'xkcd:dark pink'),
    }
    for n, color in colors.items():
        avg_n = np.convolve(ary[1], np.full(n, 1. / n), 'valid')
        p = other_plt.plot(ary[0][n - 1:],
                           avg_n,
                           color=color[0],
                           linewidth=1,
                           label='avg time last %d' % n)
        plots.append(p)

        med_n = scipy.signal.medfilt(ary[1], n + 1)
        p = other_plt.plot(ary[0],
                           med_n,
                           color=color[1],
                           linewidth=1,
                           label='median time last %d' % n)
        plots.append(p)

    formatter = mticker.ScalarFormatter()
    formatter.set_scientific(False)
    formatter.set_useOffset(False)

    comb_plt.grid()
    comb_plt.xaxis.set_major_formatter(formatter)
    comb_plt.legend()

    other_plt.grid()
    other_plt.xaxis.set_major_formatter(formatter)
    leg = other_plt.legend()
    leg2plot = {}
    for legline, plot in zip(leg.get_lines(), plots):
        legline.set_picker(5)
        leg2plot[legline] = plot

    def onpick(event):
        legline = event.artist
        plot = leg2plot[legline]
        visible = not plot[0].get_visible()
        for l in plot:
            l.set_visible(visible)

        if visible:
            legline.set_alpha(1.0)
        else:
            legline.set_alpha(0.2)
        fig.canvas.draw()
    if title is not None:
        fig.canvas.set_window_title(title)
    fig.canvas.mpl_connect('pick_event', onpick)

    plt.show()


if __name__ == '__main__':
    import sys

    if len(sys.argv) > 1:
        print('reading from %r' % sys.argv[1])
        with open(sys.argv[1], 'r') as fp:
            plot(json.load(fp), title=sys.argv[1])
    else:
        print('reading from stdin')
        plot(json.load(sys.stdin))