Mercurial > hg
view rust/hg-core/tests/test_missing_ancestors.rs @ 46209:a51d345f1404
upgrade: move optimization addition to determineactions()
The documentation of `determineactions()` mention that it is given a list
returned from `findoptimizations()` however it was not true before this patch.
The code extending actions with optimizations also mentioned about it that this
should be in determineactions.
So let's do what comments at couple of places say.
Differential Revision: https://phab.mercurial-scm.org/D9615
author | Pulkit Goyal <7895pulkit@gmail.com> |
---|---|
date | Wed, 16 Dec 2020 14:06:24 +0530 |
parents | d31d1c0685be |
children | 16b48ebf656e |
line wrap: on
line source
use hg::testing::VecGraph; use hg::Revision; use hg::*; use rand::distributions::{Distribution, Uniform}; use rand::{thread_rng, Rng, RngCore, SeedableRng}; use rand_distr::LogNormal; use std::cmp::min; use std::collections::HashSet; use std::env; use std::fmt::Debug; fn build_random_graph( nodes_opt: Option<usize>, rootprob_opt: Option<f64>, mergeprob_opt: Option<f64>, prevprob_opt: Option<f64>, ) -> VecGraph { let nodes = nodes_opt.unwrap_or(100); let rootprob = rootprob_opt.unwrap_or(0.05); let mergeprob = mergeprob_opt.unwrap_or(0.2); let prevprob = prevprob_opt.unwrap_or(0.7); let mut rng = thread_rng(); let mut vg: VecGraph = Vec::with_capacity(nodes); for i in 0..nodes { if i == 0 || rng.gen_bool(rootprob) { vg.push([NULL_REVISION, NULL_REVISION]) } else if i == 1 { vg.push([0, NULL_REVISION]) } else if rng.gen_bool(mergeprob) { let p1 = { if i == 2 || rng.gen_bool(prevprob) { (i - 1) as Revision } else { rng.gen_range(0, i - 1) as Revision } }; // p2 is a random revision lower than i and different from p1 let mut p2 = rng.gen_range(0, i - 1) as Revision; if p2 >= p1 { p2 = p2 + 1; } vg.push([p1, p2]); } else if rng.gen_bool(prevprob) { vg.push([(i - 1) as Revision, NULL_REVISION]) } else { vg.push([rng.gen_range(0, i - 1) as Revision, NULL_REVISION]) } } vg } /// Compute the ancestors set of all revisions of a VecGraph fn ancestors_sets(vg: &VecGraph) -> Vec<HashSet<Revision>> { let mut ancs: Vec<HashSet<Revision>> = Vec::new(); for i in 0..vg.len() { let mut ancs_i = HashSet::new(); ancs_i.insert(i as Revision); for p in vg[i].iter().cloned() { if p != NULL_REVISION { ancs_i.extend(&ancs[p as usize]); } } ancs.push(ancs_i); } ancs } #[derive(Clone, Debug)] enum MissingAncestorsAction { InitialBases(HashSet<Revision>), AddBases(HashSet<Revision>), RemoveAncestorsFrom(HashSet<Revision>), MissingAncestors(HashSet<Revision>), } /// An instrumented naive yet obviously correct implementation /// /// It also records all its actions for easy reproduction for replay /// of problematic cases struct NaiveMissingAncestors<'a> { ancestors_sets: &'a Vec<HashSet<Revision>>, graph: &'a VecGraph, // used for error reporting only bases: HashSet<Revision>, history: Vec<MissingAncestorsAction>, // for error reporting, assuming we are in a random test random_seed: String, } impl<'a> NaiveMissingAncestors<'a> { fn new( graph: &'a VecGraph, ancestors_sets: &'a Vec<HashSet<Revision>>, bases: &HashSet<Revision>, random_seed: &str, ) -> Self { Self { ancestors_sets: ancestors_sets, bases: bases.clone(), graph: graph, history: vec![MissingAncestorsAction::InitialBases(bases.clone())], random_seed: random_seed.into(), } } fn add_bases(&mut self, new_bases: HashSet<Revision>) { self.bases.extend(&new_bases); self.history .push(MissingAncestorsAction::AddBases(new_bases)) } fn remove_ancestors_from(&mut self, revs: &mut HashSet<Revision>) { revs.remove(&NULL_REVISION); self.history .push(MissingAncestorsAction::RemoveAncestorsFrom(revs.clone())); for base in self.bases.iter().cloned() { if base != NULL_REVISION { for rev in &self.ancestors_sets[base as usize] { revs.remove(&rev); } } } } fn missing_ancestors( &mut self, revs: impl IntoIterator<Item = Revision>, ) -> Vec<Revision> { let revs_as_set: HashSet<Revision> = revs.into_iter().collect(); let mut missing: HashSet<Revision> = HashSet::new(); for rev in revs_as_set.iter().cloned() { if rev != NULL_REVISION { missing.extend(&self.ancestors_sets[rev as usize]) } } self.history .push(MissingAncestorsAction::MissingAncestors(revs_as_set)); for base in self.bases.iter().cloned() { if base != NULL_REVISION { for rev in &self.ancestors_sets[base as usize] { missing.remove(&rev); } } } let mut res: Vec<Revision> = missing.iter().cloned().collect(); res.sort(); res } fn assert_eq<T>(&self, left: T, right: T) where T: PartialEq + Debug, { if left == right { return; } panic!(format!( "Equality assertion failed (left != right) left={:?} right={:?} graph={:?} current bases={:?} history={:?} random seed={} ", left, right, self.graph, self.bases, self.history, self.random_seed, )); } } /// Choose a set of random revisions /// /// The size of the set is taken from a LogNormal distribution /// with default mu=1.1 and default sigma=0.8. Quoting the Python /// test this is taken from: /// the default mu and sigma give us a nice distribution of mostly /// single-digit counts (including 0) with some higher ones /// The sample may include NULL_REVISION fn sample_revs<R: RngCore>( rng: &mut R, maxrev: Revision, mu_opt: Option<f64>, sigma_opt: Option<f64>, ) -> HashSet<Revision> { let mu = mu_opt.unwrap_or(1.1); let sigma = sigma_opt.unwrap_or(0.8); let log_normal = LogNormal::new(mu, sigma).unwrap(); let nb = min(maxrev as usize, log_normal.sample(rng).floor() as usize); let dist = Uniform::from(NULL_REVISION..maxrev); return rng.sample_iter(&dist).take(nb).collect(); } /// Produces the hexadecimal representation of a slice of bytes fn hex_bytes(bytes: &[u8]) -> String { let mut s = String::with_capacity(bytes.len() * 2); for b in bytes { s.push_str(&format!("{:x}", b)); } s } /// Fill a random seed from its hexadecimal representation. /// /// This signature is meant to be consistent with `RngCore::fill_bytes` fn seed_parse_in(hex: &str, seed: &mut [u8]) { if hex.len() != 32 { panic!("Seed {} is too short for 128 bits hex", hex); } for i in 0..8 { seed[i] = u8::from_str_radix(&hex[2 * i..2 * (i + 1)], 16) .unwrap_or_else(|_e| panic!("Seed {} is not 128 bits hex", hex)); } } /// Parse the parameters for `test_missing_ancestors()` /// /// Returns (graphs, instances, calls per instance) fn parse_test_missing_ancestors_params(var: &str) -> (usize, usize, usize) { let err_msg = "TEST_MISSING_ANCESTORS format: GRAPHS,INSTANCES,CALLS"; let params: Vec<usize> = var .split(',') .map(|n| n.trim().parse().expect(err_msg)) .collect(); if params.len() != 3 { panic!(err_msg); } (params[0], params[1], params[2]) } #[test] /// This test creates lots of random VecGraphs, /// and compare a bunch of MissingAncestors for them with /// NaiveMissingAncestors that rely on precomputed transitive closures of /// these VecGraphs (ancestors_sets). /// /// For each generater graph, several instances of `MissingAncestors` are /// created, whose methods are called and checked a given number of times. /// /// This test can be parametrized by two environment variables: /// /// - TEST_RANDOM_SEED: must be 128 bits in hexadecimal /// - TEST_MISSING_ANCESTORS: "GRAPHS,INSTANCES,CALLS". The default is /// "100,10,10" /// /// This is slow: it runs on my workstation in about 5 seconds with the /// default parameters with a plain `cargo --test`. /// /// If you want to run it faster, especially if you're changing the /// parameters, use `cargo test --release`. /// For me, that gets it down to 0.15 seconds with the default parameters fn test_missing_ancestors_compare_naive() { let (graphcount, testcount, inccount) = match env::var("TEST_MISSING_ANCESTORS") { Err(env::VarError::NotPresent) => (100, 10, 10), Ok(val) => parse_test_missing_ancestors_params(&val), Err(env::VarError::NotUnicode(_)) => { panic!("TEST_MISSING_ANCESTORS is invalid"); } }; let mut seed: [u8; 16] = [0; 16]; match env::var("TEST_RANDOM_SEED") { Ok(val) => { seed_parse_in(&val, &mut seed); } Err(env::VarError::NotPresent) => { thread_rng().fill_bytes(&mut seed); } Err(env::VarError::NotUnicode(_)) => { panic!("TEST_RANDOM_SEED must be 128 bits in hex"); } } let hex_seed = hex_bytes(&seed); eprintln!("Random seed: {}", hex_seed); let mut rng = rand_pcg::Pcg32::from_seed(seed); eprint!("Checking MissingAncestors against brute force implementation "); eprint!("for {} random graphs, ", graphcount); eprintln!( "with {} instances for each and {} calls per instance", testcount, inccount, ); for g in 0..graphcount { if g != 0 && g % 100 == 0 { eprintln!("Tested with {} graphs", g); } let graph = build_random_graph(None, None, None, None); let graph_len = graph.len() as Revision; let ancestors_sets = ancestors_sets(&graph); for _testno in 0..testcount { let bases: HashSet<Revision> = sample_revs(&mut rng, graph_len, None, None); let mut inc = MissingAncestors::<VecGraph>::new( graph.clone(), bases.clone(), ); let mut naive = NaiveMissingAncestors::new( &graph, &ancestors_sets, &bases, &hex_seed, ); for _m in 0..inccount { if rng.gen_bool(0.2) { let new_bases = sample_revs(&mut rng, graph_len, None, None); inc.add_bases(new_bases.iter().cloned()); naive.add_bases(new_bases); } if rng.gen_bool(0.4) { // larger set so that there are more revs to remove from let mut hrevs = sample_revs(&mut rng, graph_len, Some(1.5), None); let mut rrevs = hrevs.clone(); inc.remove_ancestors_from(&mut hrevs).unwrap(); naive.remove_ancestors_from(&mut rrevs); naive.assert_eq(hrevs, rrevs); } else { let revs = sample_revs(&mut rng, graph_len, None, None); let hm = inc.missing_ancestors(revs.iter().cloned()).unwrap(); let rm = naive.missing_ancestors(revs.iter().cloned()); naive.assert_eq(hm, rm); } } } } }