view mercurial/similar.py @ 35787:a84dbc87dae9

exchange: send bundle2 stream clones uncompressed Stream clones don't compress well. And compression undermines a point of stream clones which is to trade significant CPU reductions by increasing size. Building upon our introduction of metadata to communicate bundle information back to callers of exchange.getbundlechunks(), we add an attribute to the bundler that communicates whether the bundle is best left uncompressed. We return this attribute as part of the bundle metadata. And the wire protocol honors it when determining whether to compress the wire protocol response. The added test demonstrates that the raw result from the wire protocol is not compressed. It also demonstrates that the server will serve stream responses when the feature isn't enabled. We'll address that in another commit. The effect of this change is that server-side CPU usage for bundle2 stream clones is significantly reduced by removing zstd compression. For the mozilla-unified repository: before: 37.69 user 8.01 system after: 27.38 user 7.34 system Assuming things are CPU bound, that ~10s reduction would translate to faster clones on the client. zstd can decompress at >1 GB/s. So the overhead from decompression on the client is small in the grand scheme of things. But if zlib compression were being used, the overhead would be much greater. Differential Revision: https://phab.mercurial-scm.org/D1926
author Gregory Szorc <gregory.szorc@gmail.com>
date Mon, 22 Jan 2018 12:12:29 -0800
parents ded48ad55146
children cd196be26cb7
line wrap: on
line source

# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.

from __future__ import absolute_import

from .i18n import _
from . import (
    mdiff,
)

def _findexactmatches(repo, added, removed):
    '''find renamed files that have no changes

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after) tuples of exact matches.
    '''
    numfiles = len(added) + len(removed)

    # Build table of removed files: {hash(fctx.data()): [fctx, ...]}.
    # We use hash() to discard fctx.data() from memory.
    hashes = {}
    for i, fctx in enumerate(removed):
        repo.ui.progress(_('searching for exact renames'), i, total=numfiles,
                         unit=_('files'))
        h = hash(fctx.data())
        if h not in hashes:
            hashes[h] = [fctx]
        else:
            hashes[h].append(fctx)

    # For each added file, see if it corresponds to a removed file.
    for i, fctx in enumerate(added):
        repo.ui.progress(_('searching for exact renames'), i + len(removed),
                total=numfiles, unit=_('files'))
        adata = fctx.data()
        h = hash(adata)
        for rfctx in hashes.get(h, []):
            # compare between actual file contents for exact identity
            if adata == rfctx.data():
                yield (rfctx, fctx)
                break

    # Done
    repo.ui.progress(_('searching for exact renames'), None)

def _ctxdata(fctx):
    # lazily load text
    orig = fctx.data()
    return orig, mdiff.splitnewlines(orig)

def _score(fctx, otherdata):
    orig, lines = otherdata
    text = fctx.data()
    # mdiff.blocks() returns blocks of matching lines
    # count the number of bytes in each
    equal = 0
    matches = mdiff.blocks(text, orig)
    for x1, x2, y1, y2 in matches:
        for line in lines[y1:y2]:
            equal += len(line)

    lengths = len(text) + len(orig)
    return equal * 2.0 / lengths

def score(fctx1, fctx2):
    return _score(fctx1, _ctxdata(fctx2))

def _findsimilarmatches(repo, added, removed, threshold):
    '''find potentially renamed files based on similar file content

    Takes a list of new filectxs and a list of removed filectxs, and yields
    (before, after, score) tuples of partial matches.
    '''
    copies = {}
    for i, r in enumerate(removed):
        repo.ui.progress(_('searching for similar files'), i,
                         total=len(removed), unit=_('files'))

        data = None
        for a in added:
            bestscore = copies.get(a, (None, threshold))[1]
            if data is None:
                data = _ctxdata(r)
            myscore = _score(a, data)
            if myscore > bestscore:
                copies[a] = (r, myscore)
    repo.ui.progress(_('searching'), None)

    for dest, v in copies.iteritems():
        source, bscore = v
        yield source, dest, bscore

def _dropempty(fctxs):
    return [x for x in fctxs if x.size() > 0]

def findrenames(repo, added, removed, threshold):
    '''find renamed files -- yields (before, after, score) tuples'''
    wctx = repo[None]
    pctx = wctx.p1()

    # Zero length files will be frequently unrelated to each other, and
    # tracking the deletion/addition of such a file will probably cause more
    # harm than good. We strip them out here to avoid matching them later on.
    addedfiles = _dropempty(wctx[fp] for fp in sorted(added))
    removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx)

    # Find exact matches.
    matchedfiles = set()
    for (a, b) in _findexactmatches(repo, addedfiles, removedfiles):
        matchedfiles.add(b)
        yield (a.path(), b.path(), 1.0)

    # If the user requested similar files to be matched, search for them also.
    if threshold < 1.0:
        addedfiles = [x for x in addedfiles if x not in matchedfiles]
        for (a, b, score) in _findsimilarmatches(repo, addedfiles,
                                                 removedfiles, threshold):
            yield (a.path(), b.path(), score)