view tests/test-ancestor.py @ 41247:a89b20a49c13

rust-cpython: using MissingAncestors from Python code As precedently done with LazyAncestors on cpython.rs, we test for the presence of the 'rustext' module. incrementalmissingrevs() has two callers within the Mercurial core: `setdiscovery.partialdiscovery` and the `only()` revset. This move shows a significant discovery performance improvement in cases where the baseline is slow: using perfdiscovery on the PyPy repos, prepared with `contrib/discovery-helper <repo> 50 100`, we get averaged medians of 403ms with the Rust version vs 742ms without (about 45% better). But there are still indications that performance can be worse in cases the baseline is fast, possibly due to the conversion from Python to Rust and back becoming the bottleneck. We could measure this on mozilla-central in cases were the delta is just a few changesets. This requires confirmation, but if that's the reason, then an upcoming `partialdiscovery` fully in Rust should solve the problem. Differential Revision: https://phab.mercurial-scm.org/D5551
author Georges Racinet <georges.racinet@octobus.net>
date Fri, 30 Nov 2018 14:35:57 +0100
parents d097dd0afc19
children 876494fd967d
line wrap: on
line source

from __future__ import absolute_import, print_function

import binascii
import getopt
import math
import os
import random
import sys
import time

from mercurial.node import nullrev
from mercurial import (
    ancestor,
    debugcommands,
    hg,
    pycompat,
    ui as uimod,
    util,
)

if pycompat.ispy3:
    long = int
    xrange = range

def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7):
    '''nodes: total number of nodes in the graph
    rootprob: probability that a new node (not 0) will be a root
    mergeprob: probability that, excluding a root a node will be a merge
    prevprob: probability that p1 will be the previous node

    return value is a graph represented as an adjacency list.
    '''
    graph = [None] * nodes
    for i in xrange(nodes):
        if i == 0 or rng.random() < rootprob:
            graph[i] = [nullrev]
        elif i == 1:
            graph[i] = [0]
        elif rng.random() < mergeprob:
            if i == 2 or rng.random() < prevprob:
                # p1 is prev
                p1 = i - 1
            else:
                p1 = rng.randrange(i - 1)
            p2 = rng.choice(list(range(0, p1)) + list(range(p1 + 1, i)))
            graph[i] = [p1, p2]
        elif rng.random() < prevprob:
            graph[i] = [i - 1]
        else:
            graph[i] = [rng.randrange(i - 1)]

    return graph

def buildancestorsets(graph):
    ancs = [None] * len(graph)
    for i in xrange(len(graph)):
        ancs[i] = {i}
        if graph[i] == [nullrev]:
            continue
        for p in graph[i]:
            ancs[i].update(ancs[p])
    return ancs

class naiveincrementalmissingancestors(object):
    def __init__(self, ancs, bases):
        self.ancs = ancs
        self.bases = set(bases)
    def addbases(self, newbases):
        self.bases.update(newbases)
    def removeancestorsfrom(self, revs):
        for base in self.bases:
            if base != nullrev:
                revs.difference_update(self.ancs[base])
        revs.discard(nullrev)
    def missingancestors(self, revs):
        res = set()
        for rev in revs:
            if rev != nullrev:
                res.update(self.ancs[rev])
        for base in self.bases:
            if base != nullrev:
                res.difference_update(self.ancs[base])
        return sorted(res)

def test_missingancestors(seed, rng):
    # empirically observed to take around 1 second
    graphcount = 100
    testcount = 10
    inccount = 10
    nerrs = [0]
    # the default mu and sigma give us a nice distribution of mostly
    # single-digit counts (including 0) with some higher ones
    def lognormrandom(mu, sigma):
        return int(math.floor(rng.lognormvariate(mu, sigma)))

    def samplerevs(nodes, mu=1.1, sigma=0.8):
        count = min(lognormrandom(mu, sigma), len(nodes))
        return rng.sample(nodes, count)

    def err(seed, graph, bases, seq, output, expected):
        if nerrs[0] == 0:
            print('seed:', hex(seed)[:-1], file=sys.stderr)
        if gerrs[0] == 0:
            print('graph:', graph, file=sys.stderr)
        print('* bases:', bases, file=sys.stderr)
        print('* seq: ', seq, file=sys.stderr)
        print('*  output:  ', output, file=sys.stderr)
        print('*  expected:', expected, file=sys.stderr)
        nerrs[0] += 1
        gerrs[0] += 1

    for g in xrange(graphcount):
        graph = buildgraph(rng)
        ancs = buildancestorsets(graph)
        gerrs = [0]
        for _ in xrange(testcount):
            # start from nullrev to include it as a possibility
            graphnodes = range(nullrev, len(graph))
            bases = samplerevs(graphnodes)

            # fast algorithm
            inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases)
            # reference slow algorithm
            naiveinc = naiveincrementalmissingancestors(ancs, bases)
            seq = []
            revs = []
            for _ in xrange(inccount):
                if rng.random() < 0.2:
                    newbases = samplerevs(graphnodes)
                    seq.append(('addbases', newbases))
                    inc.addbases(newbases)
                    naiveinc.addbases(newbases)
                if rng.random() < 0.4:
                    # larger set so that there are more revs to remove from
                    revs = samplerevs(graphnodes, mu=1.5)
                    seq.append(('removeancestorsfrom', revs))
                    hrevs = set(revs)
                    rrevs = set(revs)
                    inc.removeancestorsfrom(hrevs)
                    naiveinc.removeancestorsfrom(rrevs)
                    if hrevs != rrevs:
                        err(seed, graph, bases, seq, sorted(hrevs),
                            sorted(rrevs))
                else:
                    revs = samplerevs(graphnodes)
                    seq.append(('missingancestors', revs))
                    h = inc.missingancestors(revs)
                    r = naiveinc.missingancestors(revs)
                    if h != r:
                        err(seed, graph, bases, seq, h, r)

# graph is a dict of child->parent adjacency lists for this graph:
# o  13
# |
# | o  12
# | |
# | | o    11
# | | |\
# | | | | o  10
# | | | | |
# | o---+ |  9
# | | | | |
# o | | | |  8
#  / / / /
# | | o |  7
# | | | |
# o---+ |  6
#  / / /
# | | o  5
# | |/
# | o  4
# | |
# o |  3
# | |
# | o  2
# |/
# o  1
# |
# o  0

graph = {0: [-1, -1], 1: [0, -1], 2: [1, -1], 3: [1, -1], 4: [2, -1],
         5: [4, -1], 6: [4, -1], 7: [4, -1], 8: [-1, -1], 9: [6, 7],
         10: [5, -1], 11: [3, 7], 12: [9, -1], 13: [8, -1]}

def test_missingancestors_explicit():
    """A few explicit cases, easier to check for catching errors in refactors.

    The bigger graph at the end has been produced by the random generator
    above, and we have some evidence that the other tests don't cover it.
    """
    for i, (bases, revs) in enumerate((({1, 2, 3, 4, 7}, set(xrange(10))),
                                       ({10}, set({11, 12, 13, 14})),
                                       ({7}, set({1, 2, 3, 4, 5})),
                                       )):
        print("%% removeancestorsfrom(), example %d" % (i + 1))
        missanc = ancestor.incrementalmissingancestors(graph.get, bases)
        missanc.removeancestorsfrom(revs)
        print("remaining (sorted): %s" % sorted(list(revs)))

    for i, (bases, revs) in enumerate((({10}, {11}),
                                       ({11}, {10}),
                                       ({7}, {9, 11}),
                                       )):
        print("%% missingancestors(), example %d" % (i + 1))
        missanc = ancestor.incrementalmissingancestors(graph.get, bases)
        print("return %s" % missanc.missingancestors(revs))

    print("% removeancestorsfrom(), bigger graph")
    vecgraph = [
        [-1, -1], [0, -1], [1, 0], [2, 1], [3, -1], [4, -1], [5, 1],
        [2, -1], [7, -1], [8, -1], [9, -1], [10, 1], [3, -1], [12, -1],
        [13, -1], [14, -1], [4, -1], [16, -1], [17, -1], [18, -1],
        [19, 11], [20, -1], [21, -1], [22, -1], [23, -1], [2, -1],
        [3, -1], [26, 24], [27, -1], [28, -1], [12, -1], [1, -1], [1, 9],
        [32, -1], [33, -1], [34, 31], [35, -1], [36, 26], [37, -1],
        [38, -1], [39, -1], [40, -1], [41, -1], [42, 26], [0, -1],
        [44, -1], [45, 4], [40, -1], [47, -1], [36, 0], [49, -1],
        [-1, -1], [51, -1], [52, -1], [53, -1], [14, -1],
        [55, -1], [15, -1], [23, -1], [58, -1], [59, -1], [2, -1],
        [61, 59], [62, -1], [63, -1], [-1, -1], [65, -1],
        [66, -1], [67, -1], [68, -1], [37, 28], [69, 25],
        [71, -1], [72, -1], [50, 2], [74, -1], [12, -1],
        [18, -1], [77, -1], [78, -1], [79, -1], [43, 33],
        [81, -1], [82, -1], [83, -1], [84, 45], [85, -1],
        [86, -1], [-1, -1], [88, -1], [-1, -1], [76, 83], [44, -1],
        [92, -1], [93, -1], [9, -1], [95, 67], [96, -1], [97, -1],
        [-1, -1]]
    problem_rev = 28
    problem_base = 70
    # problem_rev is a parent of problem_base, but a faulty implementation
    # could forget to remove it.
    bases = {60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6}
    if problem_rev not in vecgraph[problem_base] or problem_base not in bases:
        print("Conditions have changed")
    missanc = ancestor.incrementalmissingancestors(vecgraph.__getitem__, bases)
    revs = {4, 12, 41, 28, 68, 38, 1, 30, 56, 44}
    missanc.removeancestorsfrom(revs)
    if 28 in revs:
        print("Failed!")
    else:
        print("Ok")

def genlazyancestors(revs, stoprev=0, inclusive=False):
    print(("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" %
           (revs, stoprev, inclusive)))
    return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev,
                                  inclusive=inclusive)

def printlazyancestors(s, l):
    print('membership: %r' % [n for n in l if n in s])
    print('iteration:  %r' % list(s))

def test_lazyancestors():
    # Empty revs
    s = genlazyancestors([])
    printlazyancestors(s, [3, 0, -1])

    # Standard example
    s = genlazyancestors([11, 13])
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Standard with ancestry in the initial set (1 is ancestor of 3)
    s = genlazyancestors([1, 3])
    printlazyancestors(s, [1, -1, 0])

    # Including revs
    s = genlazyancestors([11, 13], inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Test with stoprev
    s = genlazyancestors([11, 13], stoprev=6)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
    s = genlazyancestors([11, 13], stoprev=6, inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Test with stoprev >= min(initrevs)
    s = genlazyancestors([11, 13], stoprev=11, inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])
    s = genlazyancestors([11, 13], stoprev=12, inclusive=True)
    printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0])

    # Contiguous chains: 5->4, 2->1 (where 1 is in seen set), 1->0
    s = genlazyancestors([10, 1], inclusive=True)
    printlazyancestors(s, [2, 10, 4, 5, -1, 0, 1])

# The C gca algorithm requires a real repo. These are textual descriptions of
# DAGs that have been known to be problematic, and, optionally, known pairs
# of revisions and their expected ancestor list.
dagtests = [
    (b'+2*2*2/*3/2', {}),
    (b'+3*3/*2*2/*4*4/*4/2*4/2*2', {}),
    (b'+2*2*/2*4*/4*/3*2/4', {(6, 7): [3, 5]}),
]
def test_gca():
    u = uimod.ui.load()
    for i, (dag, tests) in enumerate(dagtests):
        repo = hg.repository(u, b'gca%d' % i, create=1)
        cl = repo.changelog
        if not util.safehasattr(cl.index, 'ancestors'):
            # C version not available
            return

        debugcommands.debugbuilddag(u, repo, dag)
        # Compare the results of the Python and C versions. This does not
        # include choosing a winner when more than one gca exists -- we make
        # sure both return exactly the same set of gcas.
        # Also compare against expected results, if available.
        for a in cl:
            for b in cl:
                cgcas = sorted(cl.index.ancestors(a, b))
                pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b))
                expected = None
                if (a, b) in tests:
                    expected = tests[(a, b)]
                if cgcas != pygcas or (expected and cgcas != expected):
                    print("test_gca: for dag %s, gcas for %d, %d:"
                          % (dag, a, b))
                    print("  C returned:      %s" % cgcas)
                    print("  Python returned: %s" % pygcas)
                    if expected:
                        print("  expected:        %s" % expected)

def main():
    seed = None
    opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed='])
    for o, a in opts:
        if o in ('-s', '--seed'):
            seed = long(a, base=0) # accepts base 10 or 16 strings

    if seed is None:
        try:
            seed = long(binascii.hexlify(os.urandom(16)), 16)
        except AttributeError:
            seed = long(time.time() * 1000)

    rng = random.Random(seed)
    test_missingancestors_explicit()
    test_missingancestors(seed, rng)
    test_lazyancestors()
    test_gca()

if __name__ == '__main__':
    main()