view mercurial/cext/mpatch.c @ 33289:abd7dedbaa36

sparse: vendor Facebook-developed extension Facebook has developed an extension to enable "sparse" checkouts - a working directory with a subset of files. This feature is a critical component in enabling repositories to scale to infinite number of files while retaining reasonable performance. It's worth noting that sparse checkout is only one possible solution to this problem: another is virtual filesystems that realize files on first access. But given that virtual filesystems may not be accessible to all users, sparse checkout is necessary as a fallback. Per mailing list discussion at https://www.mercurial-scm.org/pipermail/mercurial-devel/2017-March/095868.html we want to add sparse checkout to the Mercurial distribution via roughly the following mechanism: 1. Vendor extension as-is with minimal modifications (this patch) 2. Refactor extension so it is more clearly experimental and inline with Mercurial practices 3. Move code from extension into core where possible 4. Drop experimental labeling and/or move feature into core after sign-off from narrow clone feature owners This commit essentially copies the sparse extension and tests from revision 71e0a2aeca92a4078fe1b8c76e32c88ff1929737 of the https://bitbucket.org/facebook/hg-experimental repository. A list of modifications made as part of vendoring is as follows: * "EXPERIMENTAL" added to module docstring * Imports were changed to match Mercurial style conventions * "testedwith" value was updated to core Mercurial special value and comment boilerplate was inserted * A "clone_sparse" function was renamed to "clonesparse" to appease the style checker * Paths to the sparse extension in tests reflect built-in location * test-sparse-extensions.t was renamed to test-sparse-fsmonitor.t and references to "simplecache" were removed. The test always skips because it isn't trivial to run it given the way we currently run fsmonitor tests * A double empty line was removed from test-sparse-profiles.t There are aspects of the added code that are obviously not ideal. The goal is to make a minimal number of modifications as part of the vendoring to make it easier to track changes from the original implementation. Refactoring will occur in subsequent patches.
author Gregory Szorc <gregory.szorc@gmail.com>
date Sat, 01 Jul 2017 10:43:29 -0700
parents 151cc3b3d799
children b90e8da190da
line wrap: on
line source

/*
 mpatch.c - efficient binary patching for Mercurial

 This implements a patch algorithm that's O(m + nlog n) where m is the
 size of the output and n is the number of patches.

 Given a list of binary patches, it unpacks each into a hunk list,
 then combines the hunk lists with a treewise recursion to form a
 single hunk list. This hunk list is then applied to the original
 text.

 The text (or binary) fragments are copied directly from their source
 Python objects into a preallocated output string to avoid the
 allocation of intermediate Python objects. Working memory is about 2x
 the total number of hunks.

 Copyright 2005, 2006 Matt Mackall <mpm@selenic.com>

 This software may be used and distributed according to the terms
 of the GNU General Public License, incorporated herein by reference.
*/

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <stdlib.h>
#include <string.h>

#include "util.h"
#include "bitmanipulation.h"
#include "compat.h"
#include "mpatch.h"

static char mpatch_doc[] = "Efficient binary patching.";
static PyObject *mpatch_Error;

static void setpyerr(int r)
{
	switch (r) {
	case MPATCH_ERR_NO_MEM:
		PyErr_NoMemory();
		break;
	case MPATCH_ERR_CANNOT_BE_DECODED:
		PyErr_SetString(mpatch_Error, "patch cannot be decoded");
		break;
	case MPATCH_ERR_INVALID_PATCH:
		PyErr_SetString(mpatch_Error, "invalid patch");
		break;
	}
}

struct mpatch_flist *cpygetitem(void *bins, ssize_t pos)
{
	const char *buffer;
	struct mpatch_flist *res;
	ssize_t blen;
	int r;

	PyObject *tmp = PyList_GetItem((PyObject*)bins, pos);
	if (!tmp)
		return NULL;
	if (PyObject_AsCharBuffer(tmp, &buffer, (Py_ssize_t*)&blen))
		return NULL;
	if ((r = mpatch_decode(buffer, blen, &res)) < 0) {
		if (!PyErr_Occurred())
			setpyerr(r);
		return NULL;
	}
	return res;
}

static PyObject *
patches(PyObject *self, PyObject *args)
{
	PyObject *text, *bins, *result;
	struct mpatch_flist *patch;
	const char *in;
	int r = 0;
	char *out;
	Py_ssize_t len, outlen, inlen;

	if (!PyArg_ParseTuple(args, "OO:mpatch", &text, &bins))
		return NULL;

	len = PyList_Size(bins);
	if (!len) {
		/* nothing to do */
		Py_INCREF(text);
		return text;
	}

	if (PyObject_AsCharBuffer(text, &in, &inlen))
		return NULL;

	patch = mpatch_fold(bins, cpygetitem, 0, len);
	if (!patch) { /* error already set or memory error */
		if (!PyErr_Occurred())
			PyErr_NoMemory();
		return NULL;
	}

	outlen = mpatch_calcsize(inlen, patch);
	if (outlen < 0) {
		r = (int)outlen;
		result = NULL;
		goto cleanup;
	}
	result = PyBytes_FromStringAndSize(NULL, outlen);
	if (!result) {
		result = NULL;
		goto cleanup;
	}
	out = PyBytes_AsString(result);
	if ((r = mpatch_apply(out, in, inlen, patch)) < 0) {
		Py_DECREF(result);
		result = NULL;
	}
cleanup:
	mpatch_lfree(patch);
	if (!result && !PyErr_Occurred())
		setpyerr(r);
	return result;
}

/* calculate size of a patched file directly */
static PyObject *
patchedsize(PyObject *self, PyObject *args)
{
	long orig, start, end, len, outlen = 0, last = 0, pos = 0;
	Py_ssize_t patchlen;
	char *bin;

	if (!PyArg_ParseTuple(args, "ls#", &orig, &bin, &patchlen))
		return NULL;

	while (pos >= 0 && pos < patchlen) {
		start = getbe32(bin + pos);
		end = getbe32(bin + pos + 4);
		len = getbe32(bin + pos + 8);
		if (start > end)
			break; /* sanity check */
		pos += 12 + len;
		outlen += start - last;
		last = end;
		outlen += len;
	}

	if (pos != patchlen) {
		if (!PyErr_Occurred())
			PyErr_SetString(mpatch_Error, "patch cannot be decoded");
		return NULL;
	}

	outlen += orig - last;
	return Py_BuildValue("l", outlen);
}

static PyMethodDef methods[] = {
	{"patches", patches, METH_VARARGS, "apply a series of patches\n"},
	{"patchedsize", patchedsize, METH_VARARGS, "calculed patched size\n"},
	{NULL, NULL}
};

static const int version = 1;

#ifdef IS_PY3K
static struct PyModuleDef mpatch_module = {
	PyModuleDef_HEAD_INIT,
	"mpatch",
	mpatch_doc,
	-1,
	methods
};

PyMODINIT_FUNC PyInit_mpatch(void)
{
	PyObject *m;

	m = PyModule_Create(&mpatch_module);
	if (m == NULL)
		return NULL;

	mpatch_Error = PyErr_NewException("mercurial.cext.mpatch.mpatchError",
					  NULL, NULL);
	Py_INCREF(mpatch_Error);
	PyModule_AddObject(m, "mpatchError", mpatch_Error);
	PyModule_AddIntConstant(m, "version", version);

	return m;
}
#else
PyMODINIT_FUNC
initmpatch(void)
{
	PyObject *m;
	m = Py_InitModule3("mpatch", methods, mpatch_doc);
	mpatch_Error = PyErr_NewException("mercurial.cext.mpatch.mpatchError",
					  NULL, NULL);
	PyModule_AddIntConstant(m, "version", version);
}
#endif