Mercurial > hg
view mercurial/wireprotov2peer.py @ 40025:b099e6032f38
wireprotov2: server support for sending content redirects
A "content redirect" can be sent in place of inline response content.
In terms of code, we model a content redirect as a special type of
response object holding the attributes describing that redirect.
Sending a content redirect thus becomes as simple as the object
emission layer sending an instance of that type. A cacher using
externally-addressable content storage could replace the outgoing
object stream with an object advertising its location.
The bulk of the code in this commit is teaching the output layer
which handles the object stream to recognize alternate location
objects. The rules are that if an alternate location object is
present, it must be the first and only object in the object stream.
Otherwise the server emits an error.
Differential Revision: https://phab.mercurial-scm.org/D4777
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Wed, 26 Sep 2018 18:07:55 -0700 |
parents | 86b22a4cfab1 |
children | 7e807b8a9e56 |
line wrap: on
line source
# wireprotov2peer.py - client side code for wire protocol version 2 # # Copyright 2018 Gregory Szorc <gregory.szorc@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import threading from .i18n import _ from . import ( encoding, error, sslutil, wireprotoframing, ) from .utils import ( cborutil, ) def formatrichmessage(atoms): """Format an encoded message from the framing protocol.""" chunks = [] for atom in atoms: msg = _(atom[b'msg']) if b'args' in atom: msg = msg % tuple(atom[b'args']) chunks.append(msg) return b''.join(chunks) SUPPORTED_REDIRECT_PROTOCOLS = { b'http', b'https', } SUPPORTED_CONTENT_HASHES = { b'sha1', b'sha256', } def redirecttargetsupported(ui, target): """Determine whether a redirect target entry is supported. ``target`` should come from the capabilities data structure emitted by the server. """ if target.get(b'protocol') not in SUPPORTED_REDIRECT_PROTOCOLS: ui.note(_('(remote redirect target %s uses unsupported protocol: %s)\n') % (target[b'name'], target.get(b'protocol', b''))) return False if target.get(b'snirequired') and not sslutil.hassni: ui.note(_('(redirect target %s requires SNI, which is unsupported)\n') % target[b'name']) return False if b'tlsversions' in target: tlsversions = set(target[b'tlsversions']) supported = set() for v in sslutil.supportedprotocols: assert v.startswith(b'tls') supported.add(v[3:]) if not tlsversions & supported: ui.note(_('(remote redirect target %s requires unsupported TLS ' 'versions: %s)\n') % ( target[b'name'], b', '.join(sorted(tlsversions)))) return False ui.note(_('(remote redirect target %s is compatible)\n') % target[b'name']) return True def supportedredirects(ui, apidescriptor): """Resolve the "redirect" command request key given an API descriptor. Given an API descriptor returned by the server, returns a data structure that can be used in hte "redirect" field of command requests to advertise support for compatible redirect targets. Returns None if no redirect targets are remotely advertised or if none are supported. """ if not apidescriptor or b'redirect' not in apidescriptor: return None targets = [t[b'name'] for t in apidescriptor[b'redirect'][b'targets'] if redirecttargetsupported(ui, t)] hashes = [h for h in apidescriptor[b'redirect'][b'hashes'] if h in SUPPORTED_CONTENT_HASHES] return { b'targets': targets, b'hashes': hashes, } class commandresponse(object): """Represents the response to a command request. Instances track the state of the command and hold its results. An external entity is required to update the state of the object when events occur. """ def __init__(self, requestid, command): self.requestid = requestid self.command = command # Whether all remote input related to this command has been # received. self._inputcomplete = False # We have a lock that is acquired when important object state is # mutated. This is to prevent race conditions between 1 thread # sending us new data and another consuming it. self._lock = threading.RLock() # An event is set when state of the object changes. This event # is waited on by the generator emitting objects. self._serviceable = threading.Event() self._pendingevents = [] self._decoder = cborutil.bufferingdecoder() self._seeninitial = False def _oninputcomplete(self): with self._lock: self._inputcomplete = True self._serviceable.set() def _onresponsedata(self, data): available, readcount, wanted = self._decoder.decode(data) if not available: return with self._lock: for o in self._decoder.getavailable(): if not self._seeninitial: self._handleinitial(o) continue self._pendingevents.append(o) self._serviceable.set() def _handleinitial(self, o): self._seeninitial = True if o[b'status'] == b'ok': return elif o[b'status'] == b'redirect': raise error.Abort(_('redirect responses not yet supported')) atoms = [{'msg': o[b'error'][b'message']}] if b'args' in o[b'error']: atoms[0]['args'] = o[b'error'][b'args'] raise error.RepoError(formatrichmessage(atoms)) def objects(self): """Obtained decoded objects from this response. This is a generator of data structures that were decoded from the command response. Obtaining the next member of the generator may block due to waiting on external data to become available. If the server encountered an error in the middle of serving the data or if another error occurred, an exception may be raised when advancing the generator. """ while True: # TODO this can infinite loop if self._inputcomplete is never # set. We likely want to tie the lifetime of this object/state # to that of the background thread receiving frames and updating # our state. self._serviceable.wait(1.0) with self._lock: self._serviceable.clear() # Make copies because objects could be mutated during # iteration. stop = self._inputcomplete pending = list(self._pendingevents) self._pendingevents[:] = [] for o in pending: yield o if stop: break class clienthandler(object): """Object to handle higher-level client activities. The ``clientreactor`` is used to hold low-level state about the frame-based protocol, such as which requests and streams are active. This type is used for higher-level operations, such as reading frames from a socket, exposing and managing a higher-level primitive for representing command responses, etc. This class is what peers should probably use to bridge wire activity with the higher-level peer API. """ def __init__(self, ui, clientreactor): self._ui = ui self._reactor = clientreactor self._requests = {} self._futures = {} self._responses = {} self._frameseof = False def callcommand(self, command, args, f, redirect=None): """Register a request to call a command. Returns an iterable of frames that should be sent over the wire. """ request, action, meta = self._reactor.callcommand(command, args, redirect=redirect) if action != 'noop': raise error.ProgrammingError('%s not yet supported' % action) rid = request.requestid self._requests[rid] = request self._futures[rid] = f # TODO we need some kind of lifetime on response instances otherwise # objects() may deadlock. self._responses[rid] = commandresponse(rid, command) return iter(()) def flushcommands(self): """Flush all queued commands. Returns an iterable of frames that should be sent over the wire. """ action, meta = self._reactor.flushcommands() if action != 'sendframes': raise error.ProgrammingError('%s not yet supported' % action) return meta['framegen'] def readdata(self, framefh): """Attempt to read data and do work. Returns None if no data was read. Presumably this means we're done with all read I/O. """ if not self._frameseof: frame = wireprotoframing.readframe(framefh) if frame is None: # TODO tell reactor? self._frameseof = True else: self._ui.note(_('received %r\n') % frame) self._processframe(frame) if self._frameseof: return None return True def _processframe(self, frame): """Process a single read frame.""" action, meta = self._reactor.onframerecv(frame) if action == 'error': e = error.RepoError(meta['message']) if frame.requestid in self._responses: self._responses[frame.requestid]._oninputcomplete() if frame.requestid in self._futures: self._futures[frame.requestid].set_exception(e) del self._futures[frame.requestid] else: raise e return if frame.requestid not in self._requests: raise error.ProgrammingError( 'received frame for unknown request; this is either a bug in ' 'the clientreactor not screening for this or this instance was ' 'never told about this request: %r' % frame) response = self._responses[frame.requestid] if action == 'responsedata': # Any failures processing this frame should bubble up to the # future tracking the request. try: self._processresponsedata(frame, meta, response) except BaseException as e: self._futures[frame.requestid].set_exception(e) del self._futures[frame.requestid] response._oninputcomplete() else: raise error.ProgrammingError( 'unhandled action from clientreactor: %s' % action) def _processresponsedata(self, frame, meta, response): # This can raise. The caller can handle it. response._onresponsedata(meta['data']) if meta['eos']: response._oninputcomplete() del self._requests[frame.requestid] # If the command has a decoder, we wait until all input has been # received before resolving the future. Otherwise we resolve the # future immediately. if frame.requestid not in self._futures: return if response.command not in COMMAND_DECODERS: self._futures[frame.requestid].set_result(response.objects()) del self._futures[frame.requestid] elif response._inputcomplete: decoded = COMMAND_DECODERS[response.command](response.objects()) self._futures[frame.requestid].set_result(decoded) del self._futures[frame.requestid] def decodebranchmap(objs): # Response should be a single CBOR map of branch name to array of nodes. bm = next(objs) return {encoding.tolocal(k): v for k, v in bm.items()} def decodeheads(objs): # Array of node bytestrings. return next(objs) def decodeknown(objs): # Bytestring where each byte is a 0 or 1. raw = next(objs) return [True if c == '1' else False for c in raw] def decodelistkeys(objs): # Map with bytestring keys and values. return next(objs) def decodelookup(objs): return next(objs) def decodepushkey(objs): return next(objs) COMMAND_DECODERS = { 'branchmap': decodebranchmap, 'heads': decodeheads, 'known': decodeknown, 'listkeys': decodelistkeys, 'lookup': decodelookup, 'pushkey': decodepushkey, }