view tests/test-filecache.py @ 30446:b324b4e431e5

posix: give checkexec a fast path; keep the check files and test read only Before, Mercurial would create a new temporary file every time, stat it, change its exec mode, stat it again, and delete it. Most of this dance was done to handle the rare and not-so-essential case of VFAT mounts on unix. The cost of that was paid by the much more common and important case of using normal file systems. Instead, try to create and preserve .hg/cache/checkisexec and .hg/cache/checknoexec with and without exec flag set. If the files exist and have correct exec flags set, we can conclude that that file system supports the exec flag. Best case, the whole exec check can thus be done with two stat calls. Worst case, we delete the wrong files and check as usual. That will be because temporary loss of exec bit or on file systems without support for the exec bit. In that case we check as we did before, with the additional overhead of one extra stat call. It is possible that this different test algorithm in some cases on odd file systems will give different behaviour. Again, I think it will be rare and special cases and I think it is worth the risk. test-clone.t happens to show the situation where checkisexec is left behind from the old style check, while checknoexec only will be created next time a exec check will be performed.
author Mads Kiilerich <madski@unity3d.com>
date Wed, 14 Jan 2015 01:15:26 +0100
parents 318a24b52eeb
children d83ca854fa21
line wrap: on
line source

from __future__ import absolute_import, print_function
import os
import subprocess
import sys

if subprocess.call(['python', '%s/hghave' % os.environ['TESTDIR'],
                    'cacheable']):
    sys.exit(80)

from mercurial import (
    extensions,
    hg,
    scmutil,
    ui as uimod,
    util,
)

filecache = scmutil.filecache

class fakerepo(object):
    def __init__(self):
        self._filecache = {}

    def join(self, p):
        return p

    def sjoin(self, p):
        return p

    @filecache('x', 'y')
    def cached(self):
        print('creating')
        return 'string from function'

    def invalidate(self):
        for k in self._filecache:
            try:
                delattr(self, k)
            except AttributeError:
                pass

def basic(repo):
    print("* neither file exists")
    # calls function
    repo.cached

    repo.invalidate()
    print("* neither file still exists")
    # uses cache
    repo.cached

    # create empty file
    f = open('x', 'w')
    f.close()
    repo.invalidate()
    print("* empty file x created")
    # should recreate the object
    repo.cached

    f = open('x', 'w')
    f.write('a')
    f.close()
    repo.invalidate()
    print("* file x changed size")
    # should recreate the object
    repo.cached

    repo.invalidate()
    print("* nothing changed with either file")
    # stats file again, reuses object
    repo.cached

    # atomic replace file, size doesn't change
    # hopefully st_mtime doesn't change as well so this doesn't use the cache
    # because of inode change
    f = scmutil.opener('.')('x', 'w', atomictemp=True)
    f.write('b')
    f.close()

    repo.invalidate()
    print("* file x changed inode")
    repo.cached

    # create empty file y
    f = open('y', 'w')
    f.close()
    repo.invalidate()
    print("* empty file y created")
    # should recreate the object
    repo.cached

    f = open('y', 'w')
    f.write('A')
    f.close()
    repo.invalidate()
    print("* file y changed size")
    # should recreate the object
    repo.cached

    f = scmutil.opener('.')('y', 'w', atomictemp=True)
    f.write('B')
    f.close()

    repo.invalidate()
    print("* file y changed inode")
    repo.cached

    f = scmutil.opener('.')('x', 'w', atomictemp=True)
    f.write('c')
    f.close()
    f = scmutil.opener('.')('y', 'w', atomictemp=True)
    f.write('C')
    f.close()

    repo.invalidate()
    print("* both files changed inode")
    repo.cached

def fakeuncacheable():
    def wrapcacheable(orig, *args, **kwargs):
        return False

    def wrapinit(orig, *args, **kwargs):
        pass

    originit = extensions.wrapfunction(util.cachestat, '__init__', wrapinit)
    origcacheable = extensions.wrapfunction(util.cachestat, 'cacheable',
                                            wrapcacheable)

    for fn in ['x', 'y']:
        try:
            os.remove(fn)
        except OSError:
            pass

    basic(fakerepo())

    util.cachestat.cacheable = origcacheable
    util.cachestat.__init__ = originit

def test_filecache_synced():
    # test old behavior that caused filecached properties to go out of sync
    os.system('hg init && echo a >> a && hg ci -qAm.')
    repo = hg.repository(uimod.ui())
    # first rollback clears the filecache, but changelog to stays in __dict__
    repo.rollback()
    repo.commit('.')
    # second rollback comes along and touches the changelog externally
    # (file is moved)
    repo.rollback()
    # but since changelog isn't under the filecache control anymore, we don't
    # see that it changed, and return the old changelog without reconstructing
    # it
    repo.commit('.')

def setbeforeget(repo):
    os.remove('x')
    os.remove('y')
    repo.cached = 'string set externally'
    repo.invalidate()
    print("* neither file exists")
    print(repo.cached)
    repo.invalidate()
    f = open('x', 'w')
    f.write('a')
    f.close()
    print("* file x created")
    print(repo.cached)

    repo.cached = 'string 2 set externally'
    repo.invalidate()
    print("* string set externally again")
    print(repo.cached)

    repo.invalidate()
    f = open('y', 'w')
    f.write('b')
    f.close()
    print("* file y created")
    print(repo.cached)

def antiambiguity():
    filename = 'ambigcheck'

    # try some times, because reproduction of ambiguity depends on
    # "filesystem time"
    for i in xrange(5):
        fp = open(filename, 'w')
        fp.write('FOO')
        fp.close()

        oldstat = os.stat(filename)
        if oldstat.st_ctime != oldstat.st_mtime:
            # subsequent changing never causes ambiguity
            continue

        repetition = 3

        # repeat changing via checkambigatclosing, to examine whether
        # st_mtime is advanced multiple times as expected
        for i in xrange(repetition):
            # explicit closing
            fp = scmutil.checkambigatclosing(open(filename, 'a'))
            fp.write('FOO')
            fp.close()

            # implicit closing by "with" statement
            with scmutil.checkambigatclosing(open(filename, 'a')) as fp:
                fp.write('BAR')

        newstat = os.stat(filename)
        if oldstat.st_ctime != newstat.st_ctime:
            # timestamp ambiguity was naturally avoided while repetition
            continue

        # st_mtime should be advanced "repetition * 2" times, because
        # all changes occurred at same time (in sec)
        expected = (oldstat.st_mtime + repetition * 2) & 0x7fffffff
        if newstat.st_mtime != expected:
            print("'newstat.st_mtime %s is not %s (as %s + %s * 2)" %
                  (newstat.st_mtime, expected, oldstat.st_mtime, repetition))

        # no more examination is needed regardless of result
        break
    else:
        # This platform seems too slow to examine anti-ambiguity
        # of file timestamp (or test happened to be executed at
        # bad timing). Exit silently in this case, because running
        # on other faster platforms can detect problems
        pass

print('basic:')
print()
basic(fakerepo())
print()
print('fakeuncacheable:')
print()
fakeuncacheable()
test_filecache_synced()
print()
print('setbeforeget:')
print()
setbeforeget(fakerepo())
print()
print('antiambiguity:')
print()
antiambiguity()