Mercurial > hg
view mercurial/profiling.py @ 31282:b9228a2219ca
repofilecache: define a 'join' method
We are about to turn the 'join' method of the base class Abstract, so we need
on to be defined in the localrepo. The ultimate goal here is to be able to stop
relying for the 'localrepo' class to have a 'join' methods (there is above one
hundred methods on 'localrepo'. This change make te 'repo' file cache have its
own code so that we can prepare this change to the repostory class.
explicite join
author | Pierre-Yves David <pierre-yves.david@ens-lyon.org> |
---|---|
date | Fri, 05 Aug 2016 14:23:58 +0200 |
parents | 22fbca1d11ed |
children | f40dc6f7c12f |
line wrap: on
line source
# profiling.py - profiling functions # # Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import, print_function import contextlib from .i18n import _ from . import ( encoding, error, util, ) @contextlib.contextmanager def lsprofile(ui, fp): format = ui.config('profiling', 'format', default='text') field = ui.config('profiling', 'sort', default='inlinetime') limit = ui.configint('profiling', 'limit', default=30) climit = ui.configint('profiling', 'nested', default=0) if format not in ['text', 'kcachegrind']: ui.warn(_("unrecognized profiling format '%s'" " - Ignored\n") % format) format = 'text' try: from . import lsprof except ImportError: raise error.Abort(_( 'lsprof not available - install from ' 'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/')) p = lsprof.Profiler() p.enable(subcalls=True) try: yield finally: p.disable() if format == 'kcachegrind': from . import lsprofcalltree calltree = lsprofcalltree.KCacheGrind(p) calltree.output(fp) else: # format == 'text' stats = lsprof.Stats(p.getstats()) stats.sort(field) stats.pprint(limit=limit, file=fp, climit=climit) @contextlib.contextmanager def flameprofile(ui, fp): try: from flamegraph import flamegraph except ImportError: raise error.Abort(_( 'flamegraph not available - install from ' 'https://github.com/evanhempel/python-flamegraph')) # developer config: profiling.freq freq = ui.configint('profiling', 'freq', default=1000) filter_ = None collapse_recursion = True thread = flamegraph.ProfileThread(fp, 1.0 / freq, filter_, collapse_recursion) start_time = util.timer() try: thread.start() yield finally: thread.stop() thread.join() print('Collected %d stack frames (%d unique) in %2.2f seconds.' % ( util.timer() - start_time, thread.num_frames(), thread.num_frames(unique=True))) @contextlib.contextmanager def statprofile(ui, fp): from . import statprof freq = ui.configint('profiling', 'freq', default=1000) if freq > 0: # Cannot reset when profiler is already active. So silently no-op. if statprof.state.profile_level == 0: statprof.reset(freq) else: ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq) statprof.start(mechanism='thread') try: yield finally: data = statprof.stop() profformat = ui.config('profiling', 'statformat', 'hotpath') formats = { 'byline': statprof.DisplayFormats.ByLine, 'bymethod': statprof.DisplayFormats.ByMethod, 'hotpath': statprof.DisplayFormats.Hotpath, 'json': statprof.DisplayFormats.Json, 'chrome': statprof.DisplayFormats.Chrome, } if profformat in formats: displayformat = formats[profformat] else: ui.warn(_('unknown profiler output format: %s\n') % profformat) displayformat = statprof.DisplayFormats.Hotpath kwargs = {} def fraction(s): if s.endswith('%'): v = float(s[:-1]) / 100 else: v = float(s) if 0 <= v <= 1: return v raise ValueError(s) if profformat == 'chrome': showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005) showmax = ui.configwith(fraction, 'profiling', 'showmax', 0.999) kwargs.update(minthreshold=showmin, maxthreshold=showmax) statprof.display(fp, data=data, format=displayformat, **kwargs) @contextlib.contextmanager def profile(ui): """Start profiling. Profiling is active when the context manager is active. When the context manager exits, profiling results will be written to the configured output. """ profiler = encoding.environ.get('HGPROF') if profiler is None: profiler = ui.config('profiling', 'type', default='stat') if profiler not in ('ls', 'stat', 'flame'): ui.warn(_("unrecognized profiler '%s' - ignored\n") % profiler) profiler = 'stat' output = ui.config('profiling', 'output') if output == 'blackbox': fp = util.stringio() elif output: path = ui.expandpath(output) fp = open(path, 'wb') else: fp = ui.ferr try: if profiler == 'ls': proffn = lsprofile elif profiler == 'flame': proffn = flameprofile else: proffn = statprofile with proffn(ui, fp): yield finally: if output: if output == 'blackbox': val = 'Profile:\n%s' % fp.getvalue() # ui.log treats the input as a format string, # so we need to escape any % signs. val = val.replace('%', '%%') ui.log('profile', val) fp.close() @contextlib.contextmanager def maybeprofile(ui): """Profile if enabled, else do nothing. This context manager can be used to optionally profile if profiling is enabled. Otherwise, it does nothing. The purpose of this context manager is to make calling code simpler: just use a single code path for calling into code you may want to profile and this function determines whether to start profiling. """ if ui.configbool('profiling', 'enabled'): with profile(ui): yield else: yield