Mercurial > hg
view tests/test-ancestor.py @ 31972:ba7e4a4a7f32
obsolescence: add test case D-4 for obsolescence markers exchange
About 3 years ago, in August 2014, the logic to select what markers to select on
push was ported from the evolve extension to Mercurial core. However, for some
unclear reasons, the tests for that logic were not ported alongside.
I realised it a couple of weeks ago while working on another push related issue.
I've made a clean up pass on the tests and they are now ready to integrate the
core test suite. This series of changesets do not change any logic. I just adds
test for logic that has been around for about 10 versions of Mercurial.
They are a patch for each test case. It makes it easier to review and postpone
one with documentation issues without rejecting the wholes series.
This patch introduce case D-4: unknown changeset in between known on
Each test case comes it in own test file. It help parallelism and does not
introduce a significant overhead from having a single unified giant test file.
Here are timing to support this claim.
# Multiple test files version:
# run-tests.py --local -j 1 test-exchange-*.t
53.40s user 6.82s system 85% cpu 1:10.76 total
52.79s user 6.97s system 85% cpu 1:09.97 total
52.94s user 6.82s system 85% cpu 1:09.69 total
# Single test file version:
# run-tests.py --local -j 1 test-exchange-obsmarkers.t
52.97s user 6.85s system 85% cpu 1:10.10 total
52.64s user 6.79s system 85% cpu 1:09.63 total
53.70s user 7.00s system 85% cpu 1:11.17 total
author | Pierre-Yves David <pierre-yves.david@ens-lyon.org> |
---|---|
date | Mon, 10 Apr 2017 16:55:16 +0200 |
parents | d83ca854fa21 |
children | bd872f64a8ba |
line wrap: on
line source
from __future__ import absolute_import, print_function import binascii import getopt import math import os import random import sys import time from mercurial.node import nullrev from mercurial import ( ancestor, debugcommands, hg, ui as uimod, util, ) def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7): '''nodes: total number of nodes in the graph rootprob: probability that a new node (not 0) will be a root mergeprob: probability that, excluding a root a node will be a merge prevprob: probability that p1 will be the previous node return value is a graph represented as an adjacency list. ''' graph = [None] * nodes for i in xrange(nodes): if i == 0 or rng.random() < rootprob: graph[i] = [nullrev] elif i == 1: graph[i] = [0] elif rng.random() < mergeprob: if i == 2 or rng.random() < prevprob: # p1 is prev p1 = i - 1 else: p1 = rng.randrange(i - 1) p2 = rng.choice(range(0, p1) + range(p1 + 1, i)) graph[i] = [p1, p2] elif rng.random() < prevprob: graph[i] = [i - 1] else: graph[i] = [rng.randrange(i - 1)] return graph def buildancestorsets(graph): ancs = [None] * len(graph) for i in xrange(len(graph)): ancs[i] = set([i]) if graph[i] == [nullrev]: continue for p in graph[i]: ancs[i].update(ancs[p]) return ancs class naiveincrementalmissingancestors(object): def __init__(self, ancs, bases): self.ancs = ancs self.bases = set(bases) def addbases(self, newbases): self.bases.update(newbases) def removeancestorsfrom(self, revs): for base in self.bases: if base != nullrev: revs.difference_update(self.ancs[base]) revs.discard(nullrev) def missingancestors(self, revs): res = set() for rev in revs: if rev != nullrev: res.update(self.ancs[rev]) for base in self.bases: if base != nullrev: res.difference_update(self.ancs[base]) return sorted(res) def test_missingancestors(seed, rng): # empirically observed to take around 1 second graphcount = 100 testcount = 10 inccount = 10 nerrs = [0] # the default mu and sigma give us a nice distribution of mostly # single-digit counts (including 0) with some higher ones def lognormrandom(mu, sigma): return int(math.floor(rng.lognormvariate(mu, sigma))) def samplerevs(nodes, mu=1.1, sigma=0.8): count = min(lognormrandom(mu, sigma), len(nodes)) return rng.sample(nodes, count) def err(seed, graph, bases, seq, output, expected): if nerrs[0] == 0: print('seed:', hex(seed)[:-1], file=sys.stderr) if gerrs[0] == 0: print('graph:', graph, file=sys.stderr) print('* bases:', bases, file=sys.stderr) print('* seq: ', seq, file=sys.stderr) print('* output: ', output, file=sys.stderr) print('* expected:', expected, file=sys.stderr) nerrs[0] += 1 gerrs[0] += 1 for g in xrange(graphcount): graph = buildgraph(rng) ancs = buildancestorsets(graph) gerrs = [0] for _ in xrange(testcount): # start from nullrev to include it as a possibility graphnodes = range(nullrev, len(graph)) bases = samplerevs(graphnodes) # fast algorithm inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases) # reference slow algorithm naiveinc = naiveincrementalmissingancestors(ancs, bases) seq = [] revs = [] for _ in xrange(inccount): if rng.random() < 0.2: newbases = samplerevs(graphnodes) seq.append(('addbases', newbases)) inc.addbases(newbases) naiveinc.addbases(newbases) if rng.random() < 0.4: # larger set so that there are more revs to remove from revs = samplerevs(graphnodes, mu=1.5) seq.append(('removeancestorsfrom', revs)) hrevs = set(revs) rrevs = set(revs) inc.removeancestorsfrom(hrevs) naiveinc.removeancestorsfrom(rrevs) if hrevs != rrevs: err(seed, graph, bases, seq, sorted(hrevs), sorted(rrevs)) else: revs = samplerevs(graphnodes) seq.append(('missingancestors', revs)) h = inc.missingancestors(revs) r = naiveinc.missingancestors(revs) if h != r: err(seed, graph, bases, seq, h, r) # graph is a dict of child->parent adjacency lists for this graph: # o 13 # | # | o 12 # | | # | | o 11 # | | |\ # | | | | o 10 # | | | | | # | o---+ | 9 # | | | | | # o | | | | 8 # / / / / # | | o | 7 # | | | | # o---+ | 6 # / / / # | | o 5 # | |/ # | o 4 # | | # o | 3 # | | # | o 2 # |/ # o 1 # | # o 0 graph = {0: [-1], 1: [0], 2: [1], 3: [1], 4: [2], 5: [4], 6: [4], 7: [4], 8: [-1], 9: [6, 7], 10: [5], 11: [3, 7], 12: [9], 13: [8]} def genlazyancestors(revs, stoprev=0, inclusive=False): print(("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" % (revs, stoprev, inclusive))) return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev, inclusive=inclusive) def printlazyancestors(s, l): print('membership: %r' % [n for n in l if n in s]) print('iteration: %r' % list(s)) def test_lazyancestors(): # Empty revs s = genlazyancestors([]) printlazyancestors(s, [3, 0, -1]) # Standard example s = genlazyancestors([11, 13]) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Standard with ancestry in the initial set (1 is ancestor of 3) s = genlazyancestors([1, 3]) printlazyancestors(s, [1, -1, 0]) # Including revs s = genlazyancestors([11, 13], inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Test with stoprev s = genlazyancestors([11, 13], stoprev=6) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) s = genlazyancestors([11, 13], stoprev=6, inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # The C gca algorithm requires a real repo. These are textual descriptions of # DAGs that have been known to be problematic. dagtests = [ '+2*2*2/*3/2', '+3*3/*2*2/*4*4/*4/2*4/2*2', ] def test_gca(): u = uimod.ui.load() for i, dag in enumerate(dagtests): repo = hg.repository(u, 'gca%d' % i, create=1) cl = repo.changelog if not util.safehasattr(cl.index, 'ancestors'): # C version not available return debugcommands.debugbuilddag(u, repo, dag) # Compare the results of the Python and C versions. This does not # include choosing a winner when more than one gca exists -- we make # sure both return exactly the same set of gcas. for a in cl: for b in cl: cgcas = sorted(cl.index.ancestors(a, b)) pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b)) if cgcas != pygcas: print("test_gca: for dag %s, gcas for %d, %d:" % (dag, a, b)) print(" C returned: %s" % cgcas) print(" Python returned: %s" % pygcas) def main(): seed = None opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed=']) for o, a in opts: if o in ('-s', '--seed'): seed = long(a, base=0) # accepts base 10 or 16 strings if seed is None: try: seed = long(binascii.hexlify(os.urandom(16)), 16) except AttributeError: seed = long(time.time() * 1000) rng = random.Random(seed) test_missingancestors(seed, rng) test_lazyancestors() test_gca() if __name__ == '__main__': main()